TinyLogic UHS Buffer with Three-State Output

NC7SZ125

Description

The NC7SZ125 is a single buffer with three-state output from ON Semiconductor's Ultra-High Speed (UHS) of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V range. The inputs and output are high impedance above ground when V_{CC} is 0 V . Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage. The output tolerates voltages above V_{CC} when in the 3 -STATE condition.

Features

- Ultra-High Speed: $\mathrm{t}_{\mathrm{PD}}=2.6 \mathrm{~ns}$ (Typical) into 50 pF at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- High Output Drive: $\pm 24 \mathrm{~mA}$ at $3 \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches Performance of LCX when Operated at 3.3 V V ${ }_{\text {CC }}$
- Power Down High-Impedance Inputs / Outputs
- Over-Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry
- Ultra-Small MicroPak ${ }^{\mathrm{TM}}$ Packages
- Space-Saving SC-74A and SC-88A Packages
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Pin Configurations

Figure 2. SC-88A and SC-74A (Top View)

PIN DEFINITIONS

Pin \# SC-88A / SC74A	Pin \# MicroPak	Name	Description
1	1	OE	Input
2	2	A	Input
3	3	GND	Ground
4	4	Y	Output
5	6	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage
	5	NC	No Connect

Figure 3. MicroPak (Top Through View)

FUNCTION TABLE

Inputs		Output
$\overline{\mathbf{O E}}$	\mathbf{A}	\mathbf{Y}
L	L	L
L	H	H
H	X	Z

H = HIGH Logic Level
L = LOW Logic Level
X = HIGH or LOW Logic Level
Z = HIGH Impedance State

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5	6.5	V
I_{K}	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	-	-50	mA
lok	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<0 \mathrm{~V}$	-	-50	mA
Iout	DC Output Current		-	± 50	mA
$\mathrm{I}_{\text {CC }}$ or I $\mathrm{I}_{\text {GND }}$	DC V CC or Ground Current		-	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		-	+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 Seconds)		-	+260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation in Still Air	SC-74A	-	390	mW
		SC-88A	-	332	
		MicroPak-6	-	812	
		MicroPak2 ${ }^{\text {TM }}$-6	-	812	
ESD	Human Body Model, JEDEC: JESD22-A114		-	4000	V
	Charge Device Model, JEDEC: JESD22-C101		-	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	Supply Voltage Operating		1.65	5.50	V
	Supply Voltage Data Retention		1.50	5.50	
V_{IN}	Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage	Active State	0	V_{CC}	V
		Three-State	0	5.5	
T_{A}	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times	V_{CC} at $1.8 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	0	20	ns/V
		V_{CC} at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	
		$\mathrm{V}_{\text {CC }}$ at $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	5	
$\theta_{J A}$	Thermal Resistance	SC-74A	-	320	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SC-88A	-	377	
		MicroPak-6	-	154	
		MicroPak2-6	-	154	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage	1.65 to 1.95		$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	V
		2.30 to 5.50		$0.70 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.70 \mathrm{~V}_{\mathrm{CC}}$	-	
V_{IL}	LOW Level Input Voltage	1.65 to 1.95		-	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
		2.30 to 5.50		-	-	$0.30 \mathrm{~V}_{\mathrm{CC}}$	-	$0.30 \mathrm{~V}_{\mathrm{CC}}$	
V_{OH}	HIGH Level Output Voltage	1.65	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{IOH}^{2}=-100 \mu \mathrm{~A} \end{aligned}$	1.55	1.65	-	1.55	-	V
		1.80		1.70	1.80	-	1.70	-	
		2.30		2.20	2.30	-	2.20	-	
		3.00		2.90	3.00	-	2.90	-	
		4.50		4.40	4.50	-	4.40	-	
		1.65	$\mathrm{IOH}^{\text {a }}$ - 4 mA	1.29	1.52	-	1.29	-	
		2.30	$\mathrm{IOH}=-8 \mathrm{~mA}$	1.90	2.15	-	1.90	-	
		3.00	$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	2.40	2.80	-	2.40	-	
		3.00	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.30	2.68	-	2.30	-	
		4.50	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	3.80	4.20	-	3.80	-	
V_{OL}	LOW Level Output Voltage	1.65	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{IOL}^{2}=100 \mu \mathrm{~A} \end{aligned}$	-	0.00	0.10	-	0.00	V
		1.80		-	0.00	0.10	-	0.10	
		2.30		-	0.00	0.10	-	0.10	
		3.00		-	0.00	0.10	-	0.10	
		4.50		-	0.00	0.10	-	0.10	
		1.65	$\mathrm{IOL}=4 \mathrm{~mA}$	-	0.80	0.24	-	0.24	
		2.30	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	0.10	0.30	-	0.30	
		3.00	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	-	0.15	0.40	-	0.40	
		3.00	$\mathrm{IOL}^{\text {a }} 24 \mathrm{~mA}$	-	0.22	0.55	-	0.55	
		4.50	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	-	0.22	0.55	-	0.55	
I_{IN}	Input Leakage Current	1.65 to 5.5	$0 \geq \mathrm{V}_{\text {IN }} \geq 5.5 \mathrm{~V}$	-	-	± 1	-	± 10	$\mu \mathrm{A}$
IOZ	3-STATE Output Leakage	0 to 5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \geq \mathrm{V}_{\mathrm{O}} \geq 5.5 \mathrm{~V} \end{aligned}$	-	-	± 1	-	± 10	$\mu \mathrm{A}$
loff	Power Off Leakage Current	0	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	-	-	1	-	10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	1.65 to 5.50	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, GND	-	-	2	-	20	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
tpLH , tPHL	Propagation Delay (Figure 4, 6)	1.65	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{D}=1 \mathrm{MQ} \\ & \mathrm{~S}_{1}=\text { OPEN } \end{aligned}$	-	6.4	13.2	-	13.8	ns
		1.80		-	5.3	11.0	-	11.5	
		2.50 ± 0.20		-	3.4	7.5	-	8.0	
		3.30 ± 0.30		-	2.5	5.2	-	5.5	
		5.00 ± 0.50		-	2.1	4.5	-	4.8	
		3.30 ± 0.30	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{~S}_{1}=\mathrm{OPEN} \end{aligned}$	-	3.2	5.7	-	6.0	
		5.00 ± 0.50		-	2.6	5.0	-	5.3	
$\mathrm{t}_{\text {PZL }}$, tPZH	Output Enable Time (Figure 4, 6)	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{RU}=500 \Omega \\ & \mathrm{~S}_{1}=G N D \text { for tpZH } \\ & \mathrm{S}_{1}=\mathrm{V}_{\mathrm{IN}} \text { for } t_{\text {PZL }} \\ & \mathrm{V}_{\text {IN }}=2 \cdot V_{C C} \end{aligned}$	-	8.4	15.0	-	15.6	ns
		1.80		-	7.0	12.5	-	13.0	
		2.50 ± 0.20		-	4.6	8.5	-	9.0	
		3.30 ± 0.30		-	3.5	6.2	-	6.5	
		5.00 ± 0.50		-	2.8	5.5	-	5.8	
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time (Figure 4, 6)	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{RU}^{2}=500 \Omega \\ & \mathrm{~S}_{1}=\mathrm{GND} \text { for tpHZ } \\ & \mathrm{S}_{1}=\mathrm{V}_{\text {IN }} \text { for tpLZ } \\ & \mathrm{V}_{\text {IN }}=2 \cdot \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	6.5	13.2	-	14.5	
		1.80		-	5.4	11.0	-	12.0	
		2.50 ± 0.20		-	3.5	8.0	-	8.5	
		3.30 ± 0.30		-	2.8	5.7	-	6.0	
		5.00 ± 0.50		-	2.1	4.7	-	5.0	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	0.00		-	4	-	-	-	pF
Cout	Output Capacitance	0.00		-	8	-	-	-	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2) (Figure 5)	3.30		-	17	-	-	-	pF

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output loading and operating at 50% duty cycle. $\mathrm{C}_{P D}$ is related to $\mathrm{I}_{\mathrm{CCD}}$ dynamic operating current by the expression: $I_{C C D}=\left(C_{P D}\right)\left(\mathrm{V}_{C C}\right)\left(\mathrm{f}_{\mathrm{IN}}\right)+\left(\mathrm{I}_{\mathrm{CC}}\right.$ static).

NOTE:
3. C_{L} includes load and stray capacitance; Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 4. AC Test Circuit

NOTE:
4. Input $=\mathrm{AC}$ Waveform; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.8 \mathrm{~ns}$; PRR $=10 \mathrm{MHz}$; Duty Cycle $=50 \%$.
Figure 5. ICCD Test Circuit

Figure 6. AC Waveforms

ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature	Packages	Shipping ${ }^{\dagger}$
NC7SZ125M5X	$7 Z 25$	-40 to $+85^{\circ} \mathrm{C}$	SC-74A	$3000 /$ Tape \& Reel
NC7SZ125P5X	Z25	-40 to $+85^{\circ} \mathrm{C}$	SC-88A	$3000 /$ Tape \& Reel
NC7SZ125L6X	DD	-40 to $+85^{\circ} \mathrm{C}$	MicroPak	$5000 /$ Tape \& Reel
NC7SZ125FHX	DD	-40 to $+85^{\circ} \mathrm{C}$	MicroPak2	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. countries.

| DOCUMENT NUMBER: | 98AON13590G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SIP6 1.45X1.0 | PAGE 1 OF 1 |

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE

DIM	MILLIMETERS	
	MIN	MAX
A	0.90	1.10
A1	0.01	0.10
\mathbf{b}	0.25	0.50
\mathbf{c}	0.10	0.26
\mathbf{D}	2.85	3.15
E	2.50	3.00
E1	1.35	1.65
\mathbf{e}	0.95 BSC	
\mathbf{L}	0.20	0.60
\mathbf{M}	0°	

RECOMMENDED SOLDERING FOOTPRINT*

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
$M \quad=$ Date Code

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " - ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SC-74A	PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

| DOCUMENT NUMBER: | 98AON13593G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6 1.0X1.0, 0.35P | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

