

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

May 2000 Revised December 2005

FSA266 • NC7WB66

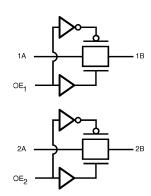
Low Voltage Dual SPST Normally Open Analog Switch or 2-Bit Bus Switch

General Description

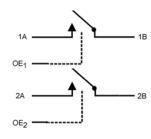
The FSA266 or NC7WB66 is an ultra high-speed (UHS) dual single-pole/single-throw (SPST) analog switch or 2-bit bus switch. The device is fabricated with advanced sub-micron CMOS technology to achieve high speed enable and disable times and low On Resistance over a broad $\rm V_{CC}$ range. The device is specified to operate over the 1.65 to 5.5V $\rm V_{CC}$ operating range. The device is organized as a dual switch with independent CMOS compatible switch enable (OE) controls. When OE is HIGH, the switch is ON and Port A is connected to Port B. When OE is LOW, the switch is OPEN and a high-impedance state exists between the two ports. The enable inputs tolerate voltages up to 5.5V independent of the $\rm V_{CC}$ operating range.

Features

- Useful in both analog and digital applications
- Space saving US8 surface mount package
- MicroPak™ Pb-Free leadless package
- Typical 7Ω On Resistance @ 5V V_{CC}
- Broad V_{CC} operating range: 1.65V to 5.5V
- Rail-to-Rail signal handling
- Power down high impedance control inputs
- Control inputs are overvoltage tolerant
- Control inputs are CMOS compatible
- >300 MHz -3dB bandwidth


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
FSA266K8X	MAB08A	WB66	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3K Units on Tape and Reel
FSA266L8X	MAC08A	P4	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
NC7WB66K8X	MAB08A	WB66	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3K Units on Tape and Reel
NC7WB66L8X	MAC08A	P4	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel


Pb-Free package per JEDEC J-STD-020B.

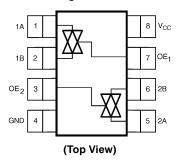
 $\label{eq:microPak} \mbox{MicroPak}^{\tiny{\mbox{\scriptsize TM}}} \mbox{ is a trademark of Fairchild Semiconductor Corporation.}$

Logic Symbol

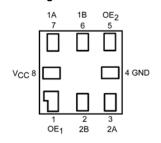
Analog Symbol

Pin Descriptions

Pin Names	Description
A	Switch Port A
В	Switch Port B
OE	Control Input


Function Table

Switch Enable Input (OE)	Function
L	Disconnect
Н	B Connected to A


H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for US8

Pad Assignments for MicroPak

(Top Through View)

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \text{Supply Voltage (V}_{CC}) & -0.5 \text{V to } +7.0 \text{V} \\ \text{DC Switch Voltage (V}_{S}) & -0.5 \text{V to V}_{CC} + 0.5 \text{V} \\ \text{DC Input Voltage (V}_{IN}) \text{ (Note 2)} & -0.5 \text{V to } +7.0 \text{V} \\ \text{DC Input Diode Current} \end{array}$

Junction Lead Temperature

under Bias (T_J) +150°C

Junction Lead Temperature (T_L)

(Soldering, 10 Seconds) +260°C

Power Dissipation (P_D) @ +85°C

SC70-6 250 mW

Recommended Operating Conditions (Note 3)

Input Rise and Fall Time (t_r, t_f)

 $\label{eq:control} \begin{array}{lll} \text{Control Input V}_{CC} = 1.65\text{V} - 2.7\text{V} & 0 \text{ ns/V to 20 ns/V} \\ \text{Control Input V}_{CC} = 3.0\text{V} - 3.6\text{V} & 0 \text{ ns/V to 10 ns/V} \\ \text{Control Input V}_{CC} = 4.5\text{V} - 5.5\text{V} & 0 \text{ ns/V to 5 ns/V} \\ \text{Thermal Resistance } (\theta_{JA}) & 250^{\circ}\text{C/W} \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°C	to +85°C	Units	Conditions
Symbol	raiametei	(V)	Min	Тур	Max	Min	Max	Ullits	Conditions
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V	
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v	
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25V _{CC}	V	
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	l v	
İIN	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \leq V_{IN} \leq 5.5V$
OFF	Switch OFF Leakage Current	1.65 to 5.5			±0.1		±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance			6.0	10.0		10.0		$V_1 = 0V, I_0 = 30 \text{ mA}$
	(Note 4)	4.5		7.0	13.5		13.5	Ω	$V_1 = 2.4V, I_0 = -30 \text{ mA}$
				6.0	10.0		10.0		$V_1 = 4.5V$, $I_0 = -30 \text{ mA}$
		3.0		7.5	15.0		15.0	Ω	V _I = 0V, I _O = 24 mA
		3.0		8.5	15.0		15.0	\$2	$V_1 = 3V, I_0 = -24 \text{ mA}$
		2.3		9.0	20.0		20.0	Ω	$V_1 = 0V, I_0 = 8 \text{ mA}$
	2.3		10.5	20.0		20.0	5.2	$V_1 = 2.3V, I_0 = -8 \text{ mA}$	
		1.65		12.5	30.0		30.0	Ω	$V_I = 0V$, $I_O = 4 \text{ mA}$
				17.0	30.0		30.0	5.2	$V_I = 1.65V, I_O = -4 \text{ mA}$
lcc	Quiescent Supply Current	5.5			1.0		10.0	μА	V _{IN} = V _{CC} or GND
	All Channels ON or OFF	5.5			1.0		10.0	μΑ	I _{OUT} = 0
	Analog Signal Range	V _{CC}	0		V _{CC}	0	V _{CC}	V	
RRange	On Resistance Over	4.5		8.0	15.0		15.0		$I_O = -30 \text{ mA}, 0 \le V_I \le V_{CC}$
	Signal Range	3.0		15.0	30.0		30.0	Ω	$I_O = -24 \text{ mA}, \ 0 \le V_I \le V_{CC}$
	(Note 4)(Note 5)	2.3		45.0	75.0		75.0	52	$I_O = -8 \text{ mA}, \ 0 \le V_I \le V_{CC}$
		1.65		150	275		275		$I_O = -4 \text{ mA}, \ 0 \le V_I \le V_{CC}$
∆R _{ON}	On Resistance Match	4.5		0.2					I _O = -30 mA, V _I = 3.15
	Between Channels	3.0		0.2				Ω	$I_0 = -24 \text{ mA}, V_1 = 2.1$
	(Note 4)(Note 7)	2.3		0.5				52	$I_0 = -8 \text{ mA}, V_1 = 1.6$
		1.65		0.6					$I_0 = -4 \text{ mA}, V_1 = 1.15$
R _{flat}	On Resistance Flatness	4.5		2.5	6.0		6.0		$I_O = -30 \text{ mA}, 0 \le V_I \le V_{CC}$
	(Note 4)(Note 5)(Note 6)	3.0		8.0	17.5		17.5		$I_O = -24 \text{ mA}, 0 \le V_I \le V_{CC}$
		2.3		33.0	60.0		60.0		$I_O = -8 \text{ mA}, \ 0 \le V_I \le V_{CC}$
		1.65		135	250		250		$I_O = -4 \text{ mA}, \ 0 \le V_I \le V_{CC}$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 5: Guaranteed by design.

Note 6: Flatness is defined as the difference between the minimum and maximum value of ON Resistance over the specified range of conditions.

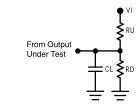
DC Electrical Characteristics (Continued)

Note 7: $\Delta R_{ON} = R_{ON} \text{ max} - R_{ON} \text{ min measured at identical V}_{CC}$, temperature and voltage levels.

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	TA	= -40°C to +8	5°C	Units	Conditions	Figure
Symbol	Farameter	(V)	Min	Тур	Max	Ullis	Conditions	Number
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus	4.5 to 5.5		0.35	1.0			
	(Note 8)	3.0 to 3.6		0.7	1.5	ns	$V_I = OPEN$	Figures
		2.3 to 2.7		1.1	2.5	115	$C_L = 50$ pF, $RU = RD = 500\Omega$	1, 2
		1.65 to 1.95		2.0	4.0	Ī		
t _{PZL} , t _{PZH}	Output Enable Time	4.5 to 5.5	0.8	2.0	3.2			
	Turn on Time	3.0 to 3.6	1.2	2.5	3.9	ns	$V_I = 0V$ for t_{PZH}	Figures
		2.3 to 2.7	1.5	3.2	5.6	113	$V_I = 2 \times V_{CC}$ for t_{PZL}	1, 2
		1.65 to 1.95	2.5	5.7	10.0	Ī	$C_L = 50$ pF, $RU = RD = 500\Omega$	
t_{PLZ},t_{PHZ}	Output Disable Time	4.5 to 5.5	0.8	2.6	4.1			
	Turn Off Time	3.0 to 3.6	1.5	3.4	5.0	ns	$V_I = 0V$ for t_{PHZ}	Figures 1, 2
		2.3 to 2.7	2.0	4.2	6.9	115	$V_I = 2 \times V_{CC}$ for t_{PLZ}	
		1.65 to 1.95	3.0	6.2	10.5		$C_L = 50$ pF, $RU = RD = 500\Omega$	
Q	Charge Injection (Note 9)	1.65 to 5.5				рC	$C_L = 0.1 \text{ nF, } V_{GEN} = 0V,$	Figure 3
							$R_{GEN} = 0 \ \Omega, f = 1 \ MHz$	
OIRR	Off Isolation (Note 10)	1.65 to 5.5		-55.0		dB	$R_L = 50 \Omega, C_L = 5 pF,$	Figure 4
							f = 10 MHz	
Xtalk	Crosstalk	1.65 to 5.5		-70.0		dB	$R_L = 50 \Omega, C_L = 5 pF,$	Figure 5
							f = 10 MHz	
BW	-3dB Bandwidth	1.65 to 5.5		>300		MHz	$R_L = 50 \Omega$	Figure 8
THD	Total Harmonic Distortion						$R_L = 600\Omega$	
	(Note 9)	5		.016		%	0.5 V _{P-P}	
							f = 600 Hz to 20 KHz	

Note 8: This parameter is guaranteed by design. The switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance.


Note 9: Guaranteed by design.

Note 10: Off Isolation = $20 \log_{10} [V_A/V_{Bn}]$

Capacitance

Symbol	Parameter	Тур	Max	Units	Conditions	Figures
C _{IN}	Control Pin Input Capacitance	2.5		pF	V _{CC} = 0V	
C _{I/O} (OFF)	Switch Port Off Capacitance	5.0		pF	V _{CC} = 5.0V	Figure 6
C _{I/O} (ON)	Switch Port Capacitance when Switch is Enabled	10.0		pF	V _{CC} = 5.0V	Figure 7

AC Loading and Waveforms

Input driven by 50Ω source terminated in 50Ω

C_L includes load and stray capacitance.

Input PRR = 1.0 MHz; $t_w = 500 \text{ ns}$

FIGURE 1. AC Test Circuit

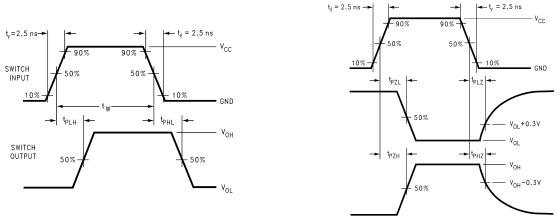


FIGURE 2. AC Waveforms

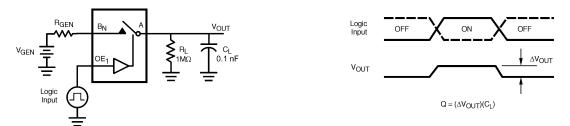


FIGURE 3. Charge Injection Test

AC Loading and Waveforms (Continued)

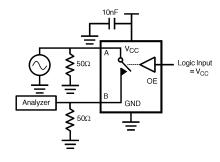


FIGURE 4. Off Isolation

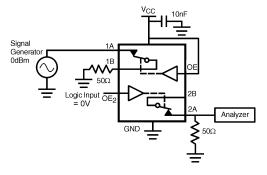


FIGURE 5. Crosstalk

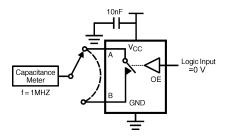


FIGURE 6. Channel Off Capacitance

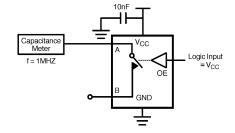
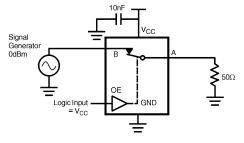
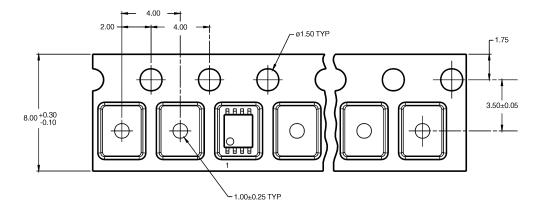


FIGURE 7. Channel On Capacitance

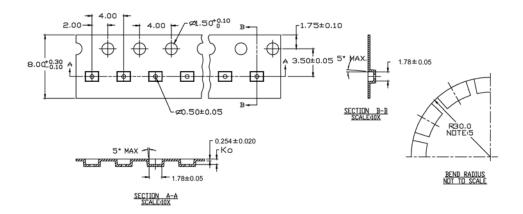


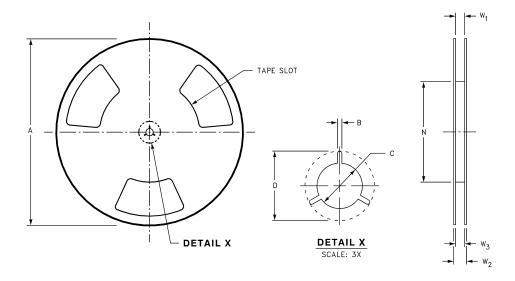

FIGURE 8. Bandwidth

Tape and Reel Specification

TAPE FORMAT for US8

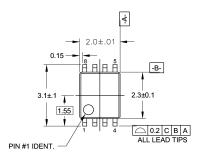
Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

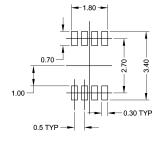

TAPE DIMENSIONS inches (millimeters)

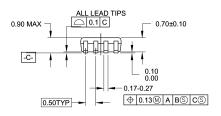

TAPE FORMAT for MicroPak

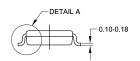
Package	Package Tape		Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
L8X	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

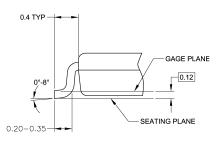
TAPE DIMENSIONS inches (millimeters)




REEL DIMENSIONS inches (millimeters)

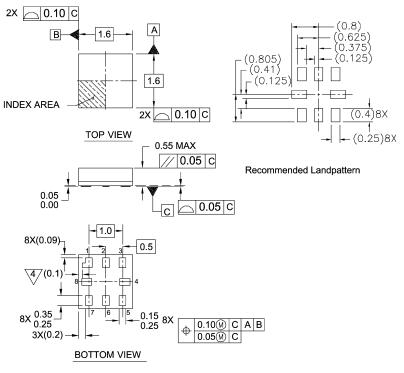

Tape Size	Α	В	С	D	N	W1	W2	W3
9 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50 / -0.00)	(14.40)	(W1 + 2.00/-1.00)


Physical Dimensions inches (millimeters) unless otherwise noted



LAND PATTERN RECOMMENDATION

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-187 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MAB08AREVC

8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y.14M-1994
- 4/PIN 1 FLAG, END OF PACKAGE OFFSET.

MAC08AREVC

Pb-Free 8-Lead MicroPak, 1.6 mm Wide Package Number MAC08A

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.			

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G
PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX
XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10
RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2
MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3
DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL
ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX