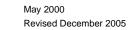


Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

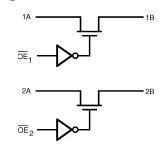
NC7WBD3125 2-Bit Low Power Bus Switch with Level Shifting

General Description

The NC7WBD3125 is a 2-bit ultra high-speed CMOS FET bus switch with enhanced level shifting circuitry and with TTL-compatible active LOW control inputs. The low On Resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 2-bit switch with independent bus enable (\overline{OE}) controls. When \overline{OE} is LOW, the switch is ON and Port A is connected to Port B. When \overline{OE} is HIGH, the switch is OPEN and a high-impedance state exists between the two ports. Reduced voltage drive to the gate of the FET switch permits nominal level shifting of 5V to 3V through the switch. Control inputs tolerate voltages up to 5.5V independent of V_{CC}.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- Typical 3Ω switch resistance at 5.0V V_{CC}, V_{IN} = 0V
- Level shift facilitates 5V to 3.3V interfacing
- Minimal propagation delay through the switch
- Power down high impedance input/output
- Zero bounce in flow through mode
- TTL compatible active LOW control inputs
- Control inputs are overvoltage tolerant
- Bus switch replacement for x125 logic part


Ordering Code:

Order Number	Package Number	Package Code Top Mark	Package Description	Supplied As
NC7WBD3125K8X	MAB08A	WB5D	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7WBD3125L8X (Preliminary)	MAC08A	Т9	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

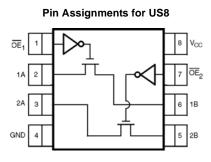
Pb-Free package per JEDEC J-STD-020B.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Logic Diagram

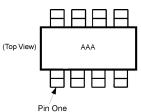
Pin Descriptions

Pin Name	Description
A	Bus A Switch I/O
В	Bus B Switch I/O
OE	Bus Enable Input

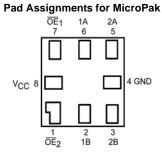

Function Table

Bus En <u>abl</u> e Input (OE)	Function
L	B Connected to A
Н	Disconnected

H = HIGH Logic Level


L = LOW Logic Level

Connection Diagrams


(Top View)

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

(Top Through View)

NC7WBD3125

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-0.5V to +7.0V
DC Output Voltage (V _{IN}) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	
(I _{IK}) V _{IN} < 0V	–50 mA
DC Output (I _{OUT}) Current	128 mA
DC V _{CC} or Ground Current	
(I _{CC} /I _{GND})	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Junction Temperature under Bias (T_J)	+150°C
Lead Temperature (T _L)	
(Soldering, 10 Seconds)	+260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 3)

4.5V to 5.5V
0V to 5.5V
0V to 5.5V
0V to 5.5V
$-40^{\circ}C$ to $+85^{\circ}C$
0 ns/V to 5 ns/V
0 ns/V to DC
250°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused logic inputs must be held HIGH or LOW. They may not float.

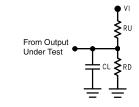
DC Electrical Characteristics

Symbol	Parameter	V _{cc}	Т	_A = −40°C to +85°	°C	Units	Conditions	
Symbol	Falameter	(V)	Min	Тур	Max	Onits	Conditions	
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18 mA	
V _{IH}	HIGH Level Input Voltage	4.5 to 5.5	2.0			V		
V _{IL}	LOW Level Input Voltage	4.5 to 5.5			0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5 to 5.5		See Figure 3		V	$V_{IN} = V_{CC}$	
I _{IN}	Input Leakage Current	5.5			±1.0	μA	$0 \le V_{IN} \le 5.5V$	
I _{OFF}	Power OFF Leakage Current	5.5			±1.0	μA	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.5		3.0	7.0		$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$	
	(Note 4)	4.5		3.0	7.0	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$	
		4.5		15.0	50.0		$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$	
I _{CC}	Quiescent Supply Current	5.5					$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	
				1.1	1.5	mA	$OE_1 = OE_2 = GND$	
					10.0	μA	$OE_1 = OE_2 = V_{CC}$	
ΔI_{CC}	Increase in I _{CC} per Input	5.5		1.0	2.5	mA	V _{IN} = 3.4V, One OE Input only,	
	(Note 5)	5.5		1.0	2.0	mA	Other $\overline{OE} = V_{CC}$	

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 5: Per TTL driven input (V_{IN} = 3.4V, control input only). A and B pins do not contribute to I_{CC}.

AC Electrical Characteristics

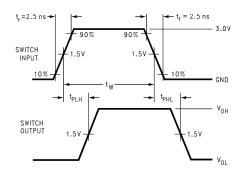

Symbol	Parameter	V _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $C_L = 50$ pF, RU = RD = 500 Ω			Units	Conditions	Figure
		(V)	Min	Тур	Max	-		Number
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 6)	4.5 to 5.5			0.25	ns	V _I = OPEN	Figures 1, 2
t _{PZL} , t _{PZH}	Output Enable Time	4.5 to 5.5	1.0	3.5	5.8	ns	$V_I = 7V$ for t_{PZL} $V_I = 0V$ for t_{PZH}	Figures 1, 2
t _{PLZ} , t _{PHZ}	Output Disable Time	4.5 to 5.5	0.8	3.0	4.8	ns	$V_I = 7V$ for t_{PLZ} $V_I = 0V$ for t_{PHZ}	Figures 1Figure 2

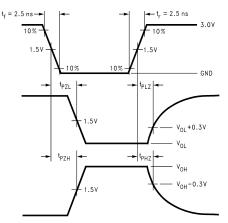
Note 6: This parameter is guaranteed. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). The specified limit is calculated on this basis.

Capacitance

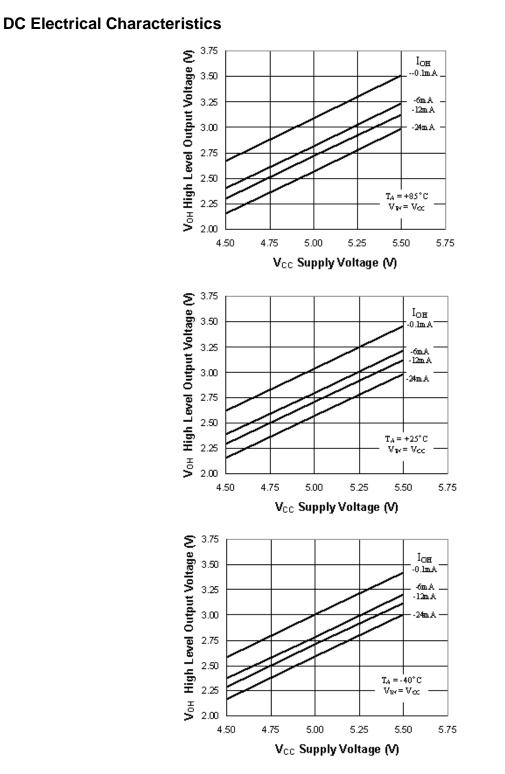
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	2.5		pF	$V_{CC} = 0V$
C _{I/O} (OFF)	Port OFF Capacitance	6.0		pF	$V_{CC} = 5.0V = \overline{OE}$
C _{I/O} (ON)	Port ON Capacitance	12.0		pF	$V_{CC} = 5.0V, \overline{OE} = 0V$

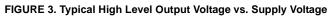
AC Loading and Waveforms

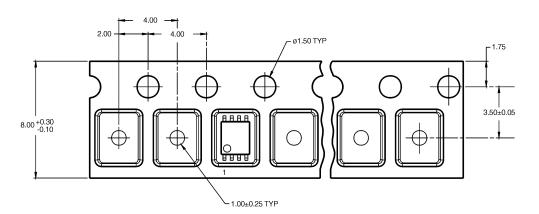



Input driven by 50Ω source terminated in 50Ω

C_L includes load and stray capacitance


Input PRR = 1.0 MHz; $t_W = 500$ ns

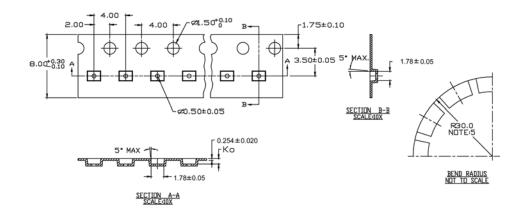



NC7WBD3125

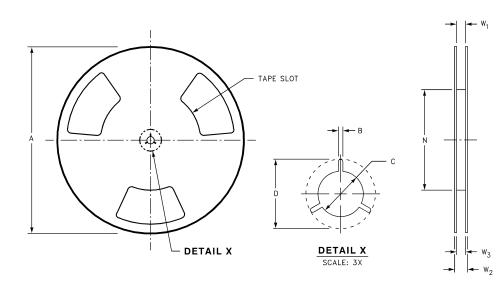
Tape and Reel Specification

TAPE FORMAT for US8

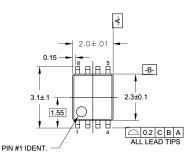
Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

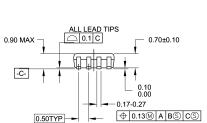

TAPE DIMENSIONS inches (millimeters)

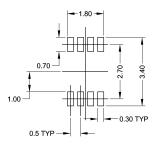
TAPE FORMAT for MicroPak


Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
L8X	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

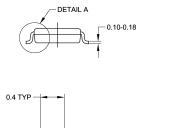
TAPE DIMENSIONS inches (millimeters)


NC7WBD3125


REEL DIMENSIONS inches (millimeters)



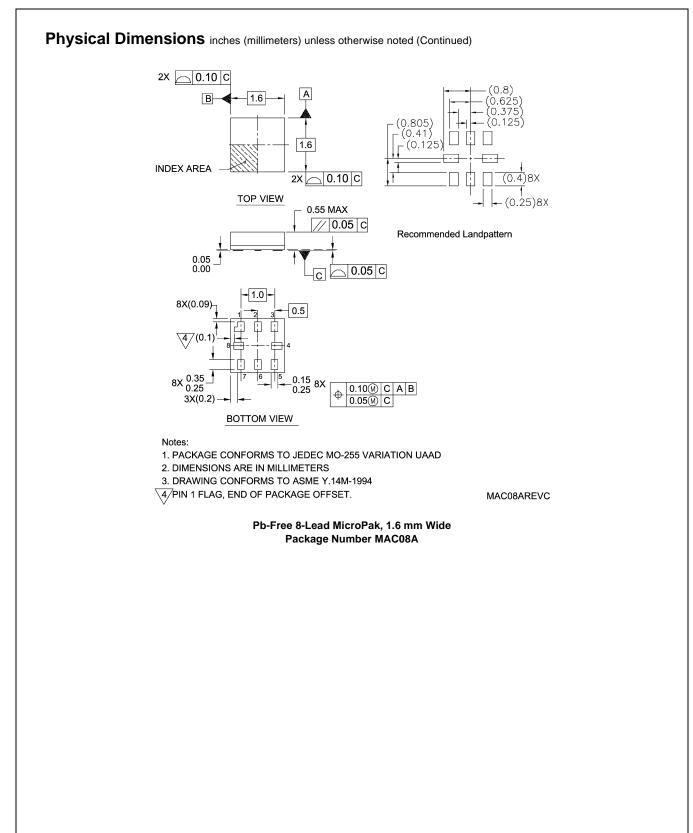
Tape Size	Α	В	С	D	Ν	W1	W2	W3
9 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)


Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

GAGE PLANE 0.12

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-187 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

0°-8

MAB08AREVC

8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for ref- erence information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3C3306LE PI5C3245LE PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE 74CBTLV3384PGG 74CBTLV3862PGG QS3126QG QS32245QG QS32X384Q1G QS3VH126QG QS3VH16210PAG