TinyLogic UHS Dual Buffer with 3-STATE Outputs

NC7WZ125

Description

The NC7WZ125 is a Dual Non-Inverting Buffer with independent active LOW enables for the 3-STATE outputs. The Ultra High Speed device is fabricated with advanced CMOS technology to achieve superior switching performance with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range. The inputs and outputs are high impedance when V_{CC} is 0 V . Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating range. Outputs tolerate voltages above V_{CC} when in the 3-STATE condition.

Features

- Space Saving US8 Surface Mount Package
- MicroPak ${ }^{\mathrm{TM}} \mathrm{Pb}-$ Free Leadless Package
- Ultra High Speed: tpd 2.6 ns Typ. into 50 pF at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- High Output Drive: $\pm 24 \mathrm{~mA}$ at $3 \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches the Performance of LCX when Operated at $3.3 \mathrm{~V}_{\mathrm{CC}}$
- Power Down High Impedance Inputs / Outputs
- Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Outputs are Overvoltage Tolerant in 3-STATE Mode
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Connection Diagrams

Figure 2. Connection Diagram (Top View)

PIN DESCRIPTIONS

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Enable Inputs for 3-STATE Outputs
A_{n}	Input
Y_{n}	3-STATE Outputs

Figure 3. Pad Assignments for MicroPak (Top Thru View)

FUNCTION TABLE

Inputs		Output
$\overline{\mathrm{OE}}$	$\mathrm{A}_{\boldsymbol{n}}$	$\mathbf{Y}_{\boldsymbol{n}}$
L	L	L
L	H	H
H	L	Z
H	H	Z

H = HIGH Logic Level
L = LOW Logic Level
Z $=3$-STATE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Note 1)		-0.5	6.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5	6.5	V
I_{K}	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	-	-50	mA
lok	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<0 \mathrm{~V}$	-	-50	mA
Iout	DC Output Source / Sink Current		-	± 50	mA
$\mathrm{I}_{\text {CC }} / \mathrm{I}_{\text {GND }}$	DC V ${ }_{\text {CC }}$ / Ground Current		-	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Lead Temperature under Bias		-	+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 Seconds)		-	+260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation in Still Air	$\begin{array}{r} \text { US8 } \\ \text { MicroPak-8 } \end{array}$	-	$\begin{aligned} & 500 \\ & 539 \end{aligned}$	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol		Parameter	Min	Max	Unit
V_{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
$\mathrm{V}_{\text {IN }}$	Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage	Active State	0	V_{Cc}	V
		3-STATE	0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}} @ 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	0	20	ns / V
		$\mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	
		$\mathrm{V}_{\text {CC }} @ 5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	5	
$\theta_{\text {JA }}$	Thermal Resistance $\begin{array}{r}\text { US8 } \\ \text { MicroPak-8 }\end{array}$		-	$\begin{aligned} & 250 \\ & 232 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS

Symbol	Parameter	Conditions		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	
				Min	Typ	Max	Min	Max			
V_{IH}	HIGH Level Input Voltage				1.65 to 1.95	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	V
				2.3 to 5.5	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-		
V_{IL}	LOW Level Input Voltage			1.65 to 1.95	-	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V	
				2.3 to 5.5	-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$		
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	1.65	1.55	1.65	-	1.55	-	V	
				2.3	2.2	2.3	-	2.2	-		
				3.0	2.9	3.0	-	2.9	-		
				4.5	4.4	4.5	-	4.4	-		
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.65	1.29	1.52	-	1.29	-		
			$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.9	2.15	-	1.9	-		
			$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	3.0	2.4	2.80	-	2.4	-		
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.3	2.68	-	2.3	-		
			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	4.5	3.8	4.20	-	3.8	-		
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65	-	0.0	0.10	-	0.10	V	
				2.3	-	0.0	0.10	-	0.10		
				3.0	-	0.0	0.10	-	0.10		
				4.5	-	0.0	0.10	-	0.10		
			$\mathrm{IOL}=4 \mathrm{~mA}$	1.65	-	0.08	0.24	-	0.24		
			$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$	2.3	-	0.10	0.3	-	0.3		
			$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0	-	0.15	0.4	-	0.4		
			$\mathrm{I}_{\text {OL }}=24 \mathrm{~mA}$	3.0	-	0.22	0.55	-	0.55		
			$\mathrm{l} \mathrm{OL}=32 \mathrm{~mA}$	4.5	-	0.22	0.55	-	0.55		
IN	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{GND}$		1.65 to 5.5	-	-	± 0.1	-	± 1	$\mu \mathrm{A}$	
I_{O}	3-STATE Output Leakage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \end{aligned}$		1.65 to 5.5	-	-	± 0.5	-	± 5	$\mu \mathrm{A}$	
IofF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0.0	-	-	1	-	10	$\mu \mathrm{A}$	
ICC	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{GND}$		1.65 to 5.5	-	-	1	-	10	$\mu \mathrm{A}$	

NOISE CHARACTERISTICS

Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		Unit
				Typ	Max	
Volp (Note 3)	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0	-	1.0	V
$V_{\text {OLV }}$ (Note 3)	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0	-	1.0	V
$\mathrm{V}_{\text {OHV }}$ (Note 3)	Quiet Output Minimum Dynamic V_{OH}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0	-	4.0	V
$\mathrm{V}_{\text {IHD }}$ (Note 3)	Minimum HIGH Level Dynamic Input Voltage	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0	-	3.5	V
VILD (Note 3)	Maximum LOW Level Dynamic Input Voltage	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	5.0	-	1.5	V

[^0]AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
${ }_{\text {tPLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay A_{N} to Y_{N} (Figure 4, 6)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S} 1=\text { Open } \end{aligned}$	1.8 ± 0.15	-	-	12.0	-	13.0	ns
			2.5 ± 0.2	-	-	7.5	-	8.0	
			3.3 ± 0.3	-	-	5.2	-	5.5	
			5.0 ± 0.5	-	-	4.5	-	4.8	
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{~S} 1=\text { Open } \end{aligned}$	3.3 ± 0.3	-	-	5.7	-	6.0	
			5.0 ± 0.5	-	-	5.0	-	5.3	
$\mathrm{t}_{\text {OSLH, }}$ toshL	Output to Output Skew (Note 4) (Figure 4, 6)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{~S} 1=\text { Open } \end{aligned}$	3.3 ± 0.3	-	-	1.0	-	1.0	ns
			5.0 ± 0.5	-	-	0.8	-	0.8	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time (Figure 4, 6)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{U}}=500 \Omega \\ & \mathrm{~S}=\mathrm{GND} \text { for } t_{\text {PZH }} \\ & \mathrm{S} 1=\mathrm{V}_{\mathrm{I}} \text { for } t_{P Z L} \\ & \mathrm{~V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.8 ± 0.15	-	-	14.0	-	15.0	ns
			2.5 ± 0.2	-	-	8.5	-	9.0	
			3.3 ± 0.3	-	-	6.2	-	6.5	
			5.5 ± 0.5	-	-	5.5	-	5.8	
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time (Figure 4, 6)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{U}}=500 \Omega \\ & \mathrm{~S}=\mathrm{GND} \text { for } t_{P Z H} \\ & \mathrm{~S} 1=\mathrm{V}_{\mathrm{I}} \text { for } t_{P Z L} \\ & \mathrm{~V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.8 ± 0.15	-	-	12.0	-	13.0	ns
			2.5 ± 0.2	-	-	8.0	-	8.5	
			3.3 ± 0.3	-	-	5.7	-	6.0	
			5.0 ± 0.5	-	-	4.7	-	5.0	
$\mathrm{Clin}^{\text {I }}$	Input Capacitance		0	-	2.5	-	-	-	pF
Cout	Output Capacitance		5.0	-	4	-	-	-	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Figure 5)	(Note 5)	3.3	-	10	-	-	-	pF
			5.0	-	12	-	-	-	

4. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\mid \mathrm{t}_{\text {PLH }} \max -\mathrm{t}_{\text {PLH }}$ min $\left|; \mathrm{t}_{\mathrm{OSH}} \mathrm{=}=\left|\mathrm{t}_{\text {PHLmax }}-\mathrm{t}_{\text {PHLmin }}\right|\right.$.
5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption ($l_{C C D}$) at no output loading and operating at 50% duty cycle. (see Figure 5) $\mathrm{C}_{P D}$ is related to $\mathrm{I}_{\mathrm{CCD}}$ dynamic operating current by the expression: $I_{C C D}=\left(C_{P D}\right)\left(V_{C C}\right)\left(f_{I N}\right)+\left(I_{C C} s t a t i c\right)$.

AC Loading and Waveforms

C_{L} includes load and stray capacitance Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 4. AC Test Circuit

Input = AC Waveform; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.8 \mathrm{~ns}$;
PRR $=10 \mathrm{MHz}$; Duty Cycle $=50 \%$.
Figure 5. ICcD Test Circuit

Figure 6. AC Waveforms

ORDERING INFORMATION

Order Number	Top Mark	Package	Shipping ${ }^{\dagger}$
NC7WZ125K8X	WZ25	8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide	$3000 /$ Tape \& Reel
NC7WZ125L8X	P3	8-Lead MicroPak, 1.6 mm Wide (Pb-Free)	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
6. Pb-Free package per JEDEC J-STD-020B.

SIDE VIEW

RECOMMENDED

LAND PATTERN

NOTES:
A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
(0.15)

| DOCUMENT NUMBER: | 98AON13591G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN8 1.6X1.6, 0.5P | PAGE 1 OF 1 |

RECOMMENDED LAND PATTERN

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-187
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.
SIDE VIEW

DETAIL A

| DOCUMENT NUMBER: | 98AON13778G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: 3. Parameter guaranteed by design.
