TinyLogic UHS Dual Unbuffered Inverter

NC7WZU04

Description

The NC7WZU04 is a dual unbuffered inverter from ON Semiconductor's Ultra High Speed Series of TinyLogic in the space saving SC-88 6-lead package. The special purpose unbuffered circuit design is intended for crystal oscillator or analog applications. The internal circuit consists of only one-stage, the output, to allow for this part to be used in these oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ range. The inputs are high impedance when V_{CC} is 0 V . Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage.

Features

- Space-Saving SC-88 6-Lead Package
- Ultra-Small MicroPak ${ }^{\text {TM }}$ Leadless Packages
- Unbuffered for Crystal Oscillator and Analog Applications
- Balanced Output Drive: $\pm 32 \mathrm{~mA}$ at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Low Quiescent Power: $\mathrm{I}_{\mathrm{CC}}<1 \mu \mathrm{~A}$ at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Pin Configurations

Figure 2. SC-88 (Top View)

AAA represents Product Code Top Mark - see ordering code
NOTE: Orientation of Top Mark determines Pin One location.
Reading the top product code mark left to right, Pin One is the lower left pin (see diagram).

Figure 4. SC-88 Pin 1 Orientation

PIN DEFINITIONS

Pin Name	Description
$\mathrm{A}_{1}, \mathrm{~A}_{2}$	Data Inputs
$\mathrm{Y}_{1}, \mathrm{Y}_{2}$	Outputs

Figure 3. MicroPak (Top Through View)

FUNCTION TABLE ($\mathrm{Y}=\overline{\mathrm{A}}$)

Input	Output
A	\mathbf{Y}
L	H
H	L

H = HIGH Logic Level
L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	DC Input Diode Current	$\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-	-50	mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<0 \mathrm{~V}$	-	-50	mA
		$\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$	-	+50	mA
Iout	DC Output Current		-	± 50	mA
I_{CC} or $\mathrm{I}_{\text {GND }}$	DC V ${ }_{\text {CC }}$ / GND Current		-	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		-	150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 Seconds)		-	260	${ }^{\circ} \mathrm{C}$
$P_{\text {D }}$	Power Dissipation in Still Air	SC-88	-	332	mW
		MicroPak-6	-	812	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
$\mathrm{V}_{\text {IN }}$	Input Voltage		0	5.5	V
$V_{\text {OUT }}$	Output Voltage		0	V_{Cc}	V
T_{A}	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance	SC-88	-	377	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		MicroPak-6	-	154	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		1.8 to 2.7	$0.85 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.85 \mathrm{~V}_{\mathrm{CC}}$	-	V
			3.0 to 5.5	0.8 V CC	-	-	0.8 V CC	-	
V_{IL}	LOW Level Input Voltage		1.8 to 2.7	-	-	$0.15 \mathrm{~V}_{\mathrm{CC}}$	-	$0.15 \mathrm{~V}_{\mathrm{CC}}$	V
			3.0 to 5.5	-	-	$0.2 \mathrm{~V}_{\mathrm{CC}}$	-	$0.2 \mathrm{~V}_{\mathrm{CC}}$	
V_{OH}	High-Level Output Voltage		$\begin{gathered} 1.65 \text { to } 5.5 \\ 1.65 \\ 2.3 \\ 2.7 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.29 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 1.4 \\ & 2.1 \\ & 2.4 \\ & 2.7 \\ & 2.5 \\ & 4.0 \end{aligned}$	- - - - - - -	$\mathrm{V}_{\mathrm{CC}}-0.1$ 1.29 1.9 2.2 2.4 2.3 3.8		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V} \mathrm{IN}=\mathrm{V} \mathrm{CC} \\ & \mathrm{IOL}=100 \mu \mathrm{uA} \\ & \mathrm{O}=4 \mathrm{~mA} \\ & \mathrm{OL}=8 \mathrm{~mA} \\ & \mathrm{OL}=8 \\ & \mathrm{OL}=12 \mathrm{~mA} \\ & \mathrm{OL}=16 \mathrm{~mA} \\ & \mathrm{OL}=24 \mathrm{~mA} \\ & \mathrm{OL}=32 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.65 \text { to } 5.5 \\ 1.65 \\ 2.3 \\ 2.7 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 0.08 \\ 0.2 \\ 0.22 \\ 0.28 \\ 0.38 \\ 0.42 \end{gathered}$	0.1 0.24 0.3 0.4 0.4 0.55 0.55		$\begin{gathered} 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$	V
I_{N}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, GND	1.65 to 5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{GND}$	1.65 to 5.5	-	-	1.0	-	10	$\mu \mathrm{A}$
I'CPEAK	Peak Supply Current in Analog Operation	$\mathrm{V}_{\text {OUT }}=$ Open $\mathrm{V}_{\mathrm{IN}}=$ Adjust for Peak I_{CC} Current	1.8	-	0.2	-	-	-	mA
			2.5	-	2	-	-	-	
			3.3	-	5	-	-	-	
			5.0	-	15	-	-	-	

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	V_{cc} (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH, }}$ t ${ }_{\text {PHL }}$	Propagation Delay (Figure 5, 6)	1.65	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$	-	5.5	9.8	-	11.0	ns
		1.8		-	4.6	8.1	-	8.9	
		2.5 ± 0.2		-	3.3	5.7	-	6.3	
		3.3 ± 0.3		-	2.7	4.1	-	4.5	
		5.0 ± 0.5		-	2.2	3.3	-	3.6	
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	4.0	6.4	-	7.0	
		5.0 ± 0.5		-	3.4	5.6	-	6.2	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	0		-	3	-	-	-	pF
C_{PD}	Power Dissipation Capacitance (Figure 7)	3.3	(Note 2)	-	3.5	-	-	-	pF
		5.0		-	5.5	-	-	-	

2. $\mathrm{C}_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output loading and operating at 50% duty cycle. $\mathrm{C}_{P D}$ is related to $\mathrm{I}_{\mathrm{CDD}}$ dynamic operating current by the expression: $I_{C C D}=\left(\mathrm{C}_{\mathrm{PD}}\right)\left(\mathrm{V}_{\mathrm{CC}}\right)\left(\mathrm{f}_{\mathrm{IN}}\right)+\left(\mathrm{I}_{\mathrm{CC}}\right.$ static).

AC Loading and Waveforms

${ }^{*} C_{L}$ includes load and stray capacitance. Input $P R R=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$.

Figure 5. AC Test Circuit

Figure 6. AC Waveforms

Application Note: When operating the NC7WZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the $I_{\text {CCPEAK }}$ specification on page 4.

Input = AC Waveform; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.8 \mathrm{~ns}$.
PRR $=10 \mathrm{MHz}$; Duty Cycle $=50 \%$.
Figure 7. IccD Test Circuit

NC7WZU04

DEVICE ORDERING INFORMATION

Device	Top Mark	Packages	Shipping †
NC7WZU04P6X	ZU4	SC-88	$3000 /$ Tape \& Reel
NC7WZU04L6X	B5	MicroPak	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

| DOCUMENT NUMBER: | 98AON13590G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SIP6 1.45X1.0 | PAGE 1 OF 1 |

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28 :	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Inverters category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLU2G04CMX1TCG NLV17SZ06DFT2G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G 74LVC06ADTR2G 74LVC04ADR2G NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV17SG14DFT2G 74ACT14SC BU4069UBF-E2 EMPP008Z NC7WZ14P6X NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74VHCT04AM SV004IE5-1C TC74HC04APF TC7SH04F,LJ(CT TC7W14FK,LF 74VHC14MTCX 74LCX14MTC

SN74LVC1GU04DBVR NLU1G14BMX1TCG NLU2G04AMX1TCG NLU2G14AMX1TCG NLU3G14AMX1TCG NLVVHC1G04DFT2G
NLX2G04CMX1TCG NLX3G14AMX1TCG 74HC14T14-13

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

