NCN1154

DP3T Data Switch, USB 2.0 High Speed / Audio, with Negative Swing Capability

The NCN1154 is a DP3T switch for combined true-ground audio, USB 2.0 high speed data, and UART applications. It allows portable systems to use a single port to pass either high speed data or audio signals from an external headset; the 3 channels being compliant to USB 2.0, USB 1.1 and USB 1.0.

The switch is capable of passing signals with negative voltages as low as 2 V below ground. The device features shunt resistors on the audio ports. These resistors are switched in when the audio channel is off and provide a safe path to ground for any charge that may build up on the audio lines. This reduces Pop \& Click noise in the audio system.

The NCN1154 is housed in a space-saving, ultra low profile $2.0 \times 1.7 \times 0.5 \mathrm{~mm}, 12$ pin UQFN package.

Features

- 3:1 High Speed Switch
- USB 2.0, USB $1.1 \&$ USB 1.0 Capable on all Channels
- High Bandwidth of 820 MHz on D+/D-
- Capable of Passing Negative Swing Signals Down to -2 V on R/L Channel
- 1.8 V Compatible Control Pins for $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.2 \mathrm{~V}$
- Audio Channel Shunt Resistors for Pop \& Click Noise Reduction
- Ultra Low THD in Audio Mode: 0.01% into 16Ω Load
- 5.25 V Tolerant Common Pins
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Micro or Mini USB Applications
- Shared High Speed Data or Audio on a Single Connector
- Mobile Phones
- Tablets
- Bar Code Scanners
- Portable Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

APPLICATION DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCN1154MUTAG	UQFN12 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Functional Block Diagram
PIN DESCRIPTIONS

Pin \#	Name	Direction	Description
1	D+	I/O	Positive Data Line for USB Signals
2	Tx	I/O	Transmit Data Line for UART Signals
3	$V_{\text {CC }}$	Power	Power Supply
4	Rx	I/O	Receive Data Line for UART Signals
5	D-	I/O	Negative Data Line for USB Signals
6	R	I/O	Right Line for Audio Signals
7	IN2	Input	Control Input Select Line
8	COM-	I/O	Right Audio / Negative Data Common Line
9	GND	Power	Ground
10	COM +	I/O	Left Audio / Positive Data Common Line
11	IN1	Input	Control Input Select Line
12	L	I/O	Left Line for Audio Signals

TRUTH TABLE

$\mathbf{I N 1}$	$\mathbf{I N 2}$	$\mathbf{D}+\mathbf{D} \mathbf{-}$	$\mathbf{R}_{\mathbf{X}} / \mathbf{T}_{\mathbf{X}}$	\mathbf{L}, \mathbf{R}	L, R SHUNT
0	0	HiZ	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	ON
0	1	ON	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	ON
1	0	HiZ	$\mathrm{Hi} Z$	ON	OFF
1	1	HiZ	ON	HiZ	ON

OPERATING CONDITIONS

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	$V_{C C}$	Positive DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{V}_{\text {IS }}$	R, L, D+, D-, Rx, Tx	Analog I/O	-2.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
	COM + , COM -		-2.5 to +6.0	
$\mathrm{V}_{\text {IN }}$	IN1, IN2	Control Input Voltage	-0.5 to +6.0	V
ICC	V_{CC}	Positive DC Supply Current	50	mA
$\mathrm{T}_{\text {S }}$		Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IIs_CON	COM + , COM-, R, L, D+, D-, Rx, Tx	Analog Signal Continuous Current-Closed Switch	± 100	mA
IIS_PK	COM + , COM-, R, L, D+, D-, Rx, Tx	Analog Signal Continuous Current 10\% Duty Cycle	± 500	mA
In	IN1, IN2	Control Input Current	1.0	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected
NOTE: These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	V_{CC}	Positive DC Supply Voltage	2.7	5.0	V
$\mathrm{V}_{\text {IS }}$	$\mathrm{D}+$ to $\mathrm{COM}+$, $\mathrm{D}-$ to $\mathrm{COM}-$	Analog Signal Voltage (Note 1)	GND	$\mathrm{V}_{\text {CC }}$	V
	L to COM + , R to COM-		-2.0	$\mathrm{V}_{\text {CC }}$	
	Tx to COM + , Rx to COM-		GND	V_{CC}	
$\mathrm{V}_{\text {IN }}$	IN1, IN2	Control Input Voltage	GND	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{T}_{\text {A }}$		Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. In USB mode, any signal supplied to the off-state audio inputs R, L may not swing below ground or above 1.5 V .

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
V_{IH}	IN1, IN2	Control Input HIGH Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$	-	-	V
VIL	IN1, IN2	Control Input LOW Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V
I_{IN}	IN1, IN2	Current Input Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}$		-	-	± 50	nA

SUPPLY CURRENT AND LEAKAGE Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
${ }^{\text {NC,NO(OFF) }}$	$\begin{gathered} \hline D_{+}, \mathrm{D}- \\ R, L \\ \mathrm{Tx}, \mathrm{Rx} \end{gathered}$	OFF State Leakage	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{COM}_{+}}=0 \mathrm{~V}, 4.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}+}, \mathrm{V}_{\mathrm{D}-}=4.2 \mathrm{~V}, 0 \mathrm{~V}$ or float $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}=$ float or $4.2 \mathrm{~V}, 0 \mathrm{~V}$	4.2			± 80	nA
$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \hline \mathrm{COM}-, \\ & \mathrm{COM}+ \end{aligned}$	ON State Leakage	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{COM}+}=0 \mathrm{~V}, 4.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}_{+}}, \mathrm{V}_{\mathrm{D}-}=4.2 \mathrm{~V}, 0 \mathrm{~V}$ or float $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}=$ float or $4.2 \mathrm{~V}, 0 \mathrm{~V}$	4.2			± 100	nA
$I_{\text {CC }}$	V_{CC}	Quiescent Supply	$\mathrm{V}_{\text {IS }}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	4.2		21	35	$\mu \mathrm{A}$
loff	$\begin{aligned} & \text { COM-, } \\ & \text { COM }+ \end{aligned}$	Power OFF Leakage	$0 \leq \mathrm{V}_{\text {IS }} \leq 5.0 \mathrm{~V}$	0			50	$\mu \mathrm{A}$

USB ON RESISTANCE Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON	$\begin{aligned} & \text { D+ to COM+ } \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \hline \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & 1 \mathrm{ON}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.08 \\ & 0.08 \\ & 0.08 \end{aligned}$		Ω
$\triangle \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	On-Resistance Matching	$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$		Ω

AUDIO ON RESISTANCE Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
R_{ON}	$\begin{aligned} & \mathrm{R} \text { to } \mathrm{COM}+ \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=-1.5 \text { to } 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.7 \\ & 4.7 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \text { R to COM+ } \\ & \mathrm{L} \text { to COM- } \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=-1.5 \text { to } 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 0.11 \\ & 0.11 \\ & 0.11 \end{aligned}$		Ω
$\triangle \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \text { R to COM+ } \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$	On-Resistance Matching	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=-1.5 \text { to } 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$		Ω
$\mathrm{R}_{\text {SH }}$	L, R	Shunt Resistance (Resistor + Switch)	$\mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA}$	2.7-4.2		118	160	Ω

UART ON RESISTANCE Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
R_{ON}	$\begin{aligned} & \text { Tx to COM+ } \\ & \text { Rx to COM- } \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \text { Tx to COM }+ \\ & \text { Rx to COM- } \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.08 \\ & 0.08 \\ & 0.08 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \text { Tx to COM+ } \\ & \text { Rx to COM- } \end{aligned}$	On-Resistance Matching	$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V} \text { CC } \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
ton		Turn-ON Time (Closed to Open)				15		us
toff		Turn-OFF Time (Closed to Open)				67		ns
TBBM		Break-Before-Make Time				11		$\mu \mathrm{s}$
BW	$\begin{gathered} \mathrm{D}+/ \mathrm{D}- \\ \mathrm{Tx} / \mathrm{Rx} \\ \mathrm{R} / \mathrm{L} \end{gathered}$	-3 dB Bandwidth	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$			$\begin{aligned} & 820 \\ & 800 \\ & 750 \end{aligned}$		MHz

ISOLATION Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
OIRR	Open	OFF-Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$			-81		dB
$\mathrm{X}_{\text {TALK }}$	$\mathrm{COM}+\text { to }$ COM-	Non-Adjacent Channel Crosstalk	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$			-93		dB
THD +N		Total Harmonic Distortion + Noise	$\begin{aligned} & \text { IN1, IN2 }=3.0 \mathrm{~V} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	3.0		0.001		\%
PSRR		Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{R}_{\text {COM }}=50 \Omega \end{aligned}$	3.0		60		dB

CAPACITANCE Min and Max apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $+125^{\circ} \mathrm{C}$ (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$.

Symbol	Pins	Parameter	Test Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
C_{IN}	IN1, IN2	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		2.0		pF
$\mathrm{Con}^{\text {a }}$	$\begin{aligned} & \mathrm{D}_{+}, \text {Tx to COM+ } \\ & \mathrm{D}-, \text { Rx to COM- } \end{aligned}$	USB, UART ON Capacitance			9.0		pF
CoN	$\begin{aligned} & \text { R to COM+ } \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$	Audio ON Capacitance			8.5		pF
$\mathrm{C}_{\text {OFF }}$	$\begin{aligned} & \text { D+, D- } \\ & \text { Tx, Rx } \end{aligned}$	USB, UART OFF Capacitance			3.5		pF

TABLE OF GRAPHS

Symbol	Parameter	Figure
NE	Near End Signaling Eye Diagram	$3,4,5,6$
FE	Far End Signaling Eye Diagram	$7,8,9,10$
BW	Frequency Response	$11,12,13$

Figure 3. Reference Near End Eye Diagram (Path Trough Dedicated Line, Temp $=25^{\circ} \mathrm{C}$)

Figure 5. UART Switch Near End Eye Diagram $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{IN} 1=1\right.$, $\mathrm{IN} 2=1$, $\left.\mathrm{Temp}=25^{\circ} \mathrm{C}\right)$

Figure 4. USB Switch Near End Eye Diagram ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{IN} 1=0, \mathrm{IN} 2=1$, $\mathrm{Temp}=25^{\circ} \mathrm{C}$)

Figure 6. Audio Switch Near End Eye Diagram ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{IN} 1=1, \mathrm{IN} 2=0$, $\mathrm{Temp}=25^{\circ} \mathrm{C}$)

Figure 7. Reference Far End Eye Diagram (Path Trough Dedicated Line, Temp $=25^{\circ} \mathrm{C}$)

Figure 9. UART Switch Far End Eye Diagram
(Vcc = 3.6 V, IN1 = 1, IN2 = 1, $\mathrm{Temp}=25^{\circ} \mathrm{C}$)

Figure 8. USB Switch Far End Eye Diagram $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{IN} 1=0, \mathrm{IN} 2=1, \mathrm{Temp}=25^{\circ} \mathrm{C}\right)$

Figure 10. Audio Switch Far End Eye Diagram ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{IN} 1=1$, $\mathrm{IN} 2=0$, $\mathrm{Temp}=25^{\circ} \mathrm{C}$)

Figure 11. USB Path Frequency Response

Figure 13. Audio Path Frequency Response
L1

DETAIL B OPTIONAL CONSTRUCTION

MOUNTING FOOTPRINT SOLDERMASK DEFINED

NOTES:
. DIMENSIONING AND tolerancing Per asme Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINALTIP
4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH 0.03 MAX ON BOTTOM SURFACE OF terminals.
5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	REF
b	0.15	0.25
D	1.70	
BSC		
E	2.00	
BSC		
e	0.40	
BSC		
K	0.20	----
L	0.45	0.55
L1	0.00	0.03
L2	0.15	
REF		

GENERIC
MARKING DIAGRAM*

$$
\begin{aligned}
& \text { XX }=\text { Specific Device Code } \\
& \text { M }=\text { Date Code } \\
& \text { - } \quad \text { Pb-Free Package }
\end{aligned}
$$

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, "G" or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23418D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN12 1.7 X 2.0, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE + MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T MAX14651ETA+T

