NCN1154 DP3T USB 2.0
 High Speed Audio Switch Evaluation Board User's Manual

Prepared by: Bertrand RENAUD
On Semiconductor

OVERVIEW

The NCN1154 is a DP3T switch for combined true-ground audio, USB 2.0 high speed data, and UART applications. It allows portable systems to use a single port to pass either USB data or audio signals from an external headset. The switch is capable of passing signals with negative voltages as low as 2 V below ground.

The NCN1154 features shunt resistors on the audio ports. These resistors are switched in when the audio channel is off

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

EVAL BOARD USER'S MANUAL

Figure 1. Board Picture

NCN1154MUTGEVB

NCN1154 - BOARD SCHEMATIC

Figure 2. Board Schematic

NCN1154 - BOARD CONNECTIONS

SUPPLY

Symbol	
VCC, GND	This is the positive and the return connection for power supply (Pins 3 and 9).

SETUP

Symbol	
SW1	This is the toggle switch for IN2 (Pin 7).
SW2	This is the toggle switch for IN1 (Pin 11).

SIGNALS

Symbol	Description
COMMON	This standard USB connector is the common data and audio lines (Pins 8 and 10).
USB	This USB connector Male A type is the high speed USB signaling path (Pins 1 and 5).
UART	This USB connector Male B type is dedicated for Tx and Rx data lines for UART signals (Pins 2 and 4).
LEFT IN	This connector is the left audio signal (Pin 12).
RIGHT IN	This connector is the right audio signal (Pin 6).

NCN1154 - TEST PROCEDURE

Equipment needed

- Power Supply
- Digital Ohm Meter
- Desktop or Laptop with Windows XP or higher
- USB Key
- USB Headset

BACKGROUND: IN1 \& IN2 TRUTH TABLE

IN1	IN2	$\mathbf{D}+, \mathbf{D}-$	$\mathbf{R}_{\mathbf{x}}, \mathbf{T}_{\mathbf{x}}$	\mathbf{L}, \mathbf{R}	L, $\mathbf{R} \mathbf{S H U N T}$
0	0	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	ON
0	1	ON	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	ON
1	0	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	ON	OFF
1	1	$\mathrm{Hi} Z$	ON	$\mathrm{Hi} Z$	ON

Test

1. Connect the power supply at 3.6 V from V_{CC} to GND. The supply current should be less than $35 \mu \mathrm{~A}$.
2. Turn SW1 and SW2 to G (ground) position

The impedance measured from COM+ to $\mathrm{D}+, \mathrm{Tx}$ and L is over $10 \mathrm{M} \Omega$.
The impedance measured from COM- to $\mathrm{D}-, \mathrm{Rx}$ and R is over $10 \mathrm{M} \Omega$.
The impedance measured from L \& R to GND is closed to 118Ω.
3. Turn SW1 to $+\left(\mathrm{V}_{\mathrm{CC}}\right)$ and keep SW2 to G (ground)

The impedance measured from COM+ to $\mathrm{D}+$ is closed to 5.5Ω.
The impedance measured from COM- to $\mathrm{D}-$ is closed to 5.5Ω.
The impedance measured from COM+ to Tx and L is over $10 \mathrm{M} \Omega$.
The impedance measured from COM- to Rx and R is over $10 \mathrm{M} \Omega$.
The impedance measured from L \& R to GND is closed to 118Ω.
4. Place a USB key connected to COMMON terminal (J6) and connect the USB terminal (J4) to the laptop or desktop.

The device is being recognized.
Remove both USB cable and USB key for next measurement.
5. Keep SW1 to $+(\mathrm{Vcc})$ and turn SW2 to $+(\mathrm{Vcc})$

The impedance measured from COM+ to Tx is closed to 5.5Ω.
The impedance measured from COM- to Rx is closed to 5.5Ω.
The impedance measured from $\mathrm{COM}+$ to $\mathrm{D}+$ and L is over $10 \mathrm{M} \Omega$.
The impedance measured from COM- to $D-$ and R is over $10 \mathrm{M} \Omega$.
The impedance measured from $\mathrm{L} \& \mathrm{R}$ to GND is closed to 118Ω.
6. Place a USB key connected to COMMON terminal (J6) and connect the UART terminal (J5) to the laptop or desktop. The device is being recognized.
Remove both USB cable and USB key for next measurement
7. Turn SW1 to G (ground) and keep SW2 to + (Vcc)

The impedance measured from COM+ to L is closed to 3Ω.
The impedance measured from COM- to R is closed to 3Ω.
The impedance measured from $\mathrm{COM}+$ to $\mathrm{D}+$ and Tx is over $5 \mathrm{M} \Omega$.
The impedance measured from COM- to $D-$ and $R x$ is over $5 \mathrm{M} \Omega$.
The impedance measured from $L \& R$ to GND is over $5 \mathrm{M} \Omega$.

NCN1154MUTGEVB

NCN1154 - COMPONENTS SELECTION

Input Capacitor

A $0.1 \mu \mathrm{~F}$ X5R ceramic capacitor or larger must bypass Vcc input to the ground. This capacitor should be placed as close as possible to this input.

ESD Diode

These devices have limited built-in ESD protection, an external bi-directional ESD / IEC diode is recommended on COM+ and COM- pin. The demoboard includes six additional ESD diodes for test purpose which are not required by the application. The ESD11N is designed to protect voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

NCN1154 - BILL OF MATERIAL

| Designator | Qty | Description | Value | Tolerance | Footprint | Manufacturer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part Number | | | | | | |

NCN1154 - PCB LAYOUT GUIDELINES

Electrical Layout Considerations

Implementing a high speed USD device requires paying attention on USB lines and traces to preserve signal integrity. The demonstration board serves as layout example and can support the design engineers to preserve high speed performances. Electrical layout guidelines are:

- The bypass capacitor must be placed as close as possible to the Vcc input pin for noise immunity.
- The characteristic impedance of each High Speed USB segment must be 45Ω.
- All corresponding D+ / D- line segment pairs must be the same length.
- The use of vias to route these signals should be avoided.
- The use of turns or bends to route these signal should be avoided.
- The ground plane of the PCB will be used to determine the characteristics impedance of each line.

Figure 3. Top Layer Routing

NCN1154MUTGEVB

Figure 4. Bottom Layer Routing
onsemi, Onsemil, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.
onsemi reserves the right to make changes without further notice to any board.
You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by onsemi shall not constitute any representation or warranty by onsemi, and no additional obligations or liabilities shall arise from onsemi having provided such information or services.
onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by onsemi to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.
onsemi does not convey any license under its patent rights nor the rights of others.
LIMITATIONS OF LIABILITY: onsemi shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if onsemi is advised of the possibility of such damages. In no event shall onsemi's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per onsemi's standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\# MAX14589EEVKIT\# TPS2041BEVM TPS2041BEVM-292 TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22963CEVM029 TPS22924CEVM-532 TS5USBC402EVM ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-6SC70EBZ EVAL-ADG2128EBZ EVAL-ADG4612EBZ EVALADG5243FEBZ EVAL-ADG5248FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ

