Integrated PoE-PD \& DC-DC Converter Controller

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

TSSOP-20 EP DE SUFFIX CASE 948AB

1
10
NCP1080 = Specific Device Code
NCP1080 = Specific Device Code
XXXX = Date Code
XXXX = Date Code
Y = Assembly Location
Y = Assembly Location
ZZ = Traceability Code
ZZ = Traceability Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. other high-voltage interfacing devices to offer complete solutions to the communication, industrial and security markets.

Features

- These are Pb -Free Devices

Powered Device Interface

- Fully Supports IEEE802.3af Standard
- Regulated Power Output up to 13 W
- Programmable Classification Current
- Adjustable Under Voltage Lock Out
- Programmable Inrush Current Limit
- Programmable Operational Current Limit up to 500 mA
- Over-temperature Protection
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ with Full Operation up to $150^{\circ} \mathrm{C}$ Junction Temperature
- 0.6 Ω Hot-swap Pass-switch with Low Loss Current Sense Technique
- Vertical N-channel DMOS Pass-switch Offers the Robustness of Discrete MOSFETs with Integrated Temperature Control

DC-DC Converter Controller

- Current Mode Control
- Supports Isolated and Non-isolated DC-DC Converter Applications
- Internal Voltage Regulators
- Wide Duty Cycle Range with Internal Slope Compensation Circuitry
- Programmable Oscillator Frequency
- Programmable Soft-start Time

PIN DIAGRAM

(Top View)
ORDERING INFORMATION

Part Number	Package	Shipping Configuration ${ }^{\dagger}$	Temperature Range
NCP1080DEG	TSSOP-20 EP (Pb-Free)	74 units / Tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
NCP1080DER2G	TSSOP-20 EP (Pb-Free)	$2500 /$ Tape \& Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. NCP1080 Block Diagram

SIMPLIFIED APPLICATION DIAGRAMS

Figure 2. Isolated Fly-back Converter

Figure 2 shows the integrated PoE-PD switch and DC-DC controller configured to work in a fully isolated application. The output voltage regulation is accomplished with an external opto-coupler and a shunt regulator (Z1).

Figure 3. Non-Isolated Fly-back Converter
Figure 3 shows the integrated $\mathrm{PoE}-\mathrm{PD}$ and $\mathrm{DC}-\mathrm{DC}$ controller configured in a non-isolated fly-back configuration. A compensation network is inserted between the FB and the COMP pin for overall stability of the feedback loop.

Figure 4. Non-Isolated Fly-back with Extra Winding

Figure 4 shows the same non-isolated fly-back configuration as Figure 3, but adds a 12 V auxiliary bias winding on the transformer to provide power to the NCP1080 DC-DC controller via its VDDH pin. This topology shuts off the current flowing from VPORTP to VDDH and therefore reduces the internal power dissipation of the PD, resulting in higher overall power efficiency.

Figure 5. Non-Isolated Forward Converter

Figure 5 shows the NCP1080 used in a non-isolated forward topology.

Table 1. PIN DESCRIPTIONS

Name	Pin No.	Type	Description
VPORTP	1	Supply	Positive input power. Voltage with respect to VPORTN ${ }_{1,2}$
VPORTN1 VPORTN2	6,8	Ground	Negative input power. Connected to the source of the internal pass-switch.
RTN	7	Ground	DC-DC controller power return. Connected to the drain of the internal pass-switch. It must be connected to ARTN. This pin is also the drain of the internal pass-switch.
ARTN	14	Ground	DC-DC controller ground pin. Must be connected to RTN as a single point ground connection for improved noise immunity.
VDDH	16	Supply	Output of the 9 V LDO internal regulator. Voltage with respect to ARTN. Supplies the internal gate driver. VDDH must be bypassed to ARTN with a $1 \mu \mathrm{~F}$ or $2.2 \mu \mathrm{~F}$ ceramic capacitor with low ESR.
VDDL	17	Supply	Output of the 3.3 V LDO internal regulator. Voltage with respect to ARTN. This pin can be used to bias an external low-power LED (1 mA max.) connected to ARTN, and can also be used to add extra biasing current in the external opto-coupler. VDDL must be bypassed to ARTN with a 330 nF or 470 nF ceramic capacitor with low ESR.
CLASS	2	Input	Classification current programming pin. Connect a resistor between CLASS and VPORTN ${ }_{1,2}$.
INRUSH	4	Input	Inrush current limit programming pin. Connect a resistor between INRUSH and VPORTN 1,2 .
ILIM1	5	Input	Operational current limit programming pin. Connect a resistor between ILIM1 and VPORTN $_{1,2}$.
UVLO	3	Input	DC-DC controller under-voltage lockout input. Voltage with respect to VPORTN $_{1,2}$. Connect a resistor-divider from VPORTP to UVLO to VPORTN ${ }_{1,2}$ to set an external UVLO threshold.
GATE	15	Output	DC-DC controller gate driver output pin.
OSC	11	Input	Internal oscillator frequency programming pin. Connect a resistor between OSC and ARTN.
NC	13		No connect pin, must not be connected.
COMP	18	I/O	Output of the internal error amplifier of the DC-DC controller. COMP is pulled-up internally to VDDL with a $5 \mathrm{k} \Omega$ resistor. In isolated applications, COMP is connected to the collector of the opto-coupler. Voltage with respect to ARTN.
FB	19	Input	DC-DC controller inverting input of the internal error amplifier. In isolated applications, the pin should be strapped to ARTN to disable the internal error amplifier.
CS	12	Input	Current-sense input for the DC-DC controller. Voltage with respect to ARTN.
SS	20	Input	Soft-start input for the DC-DC controller. A capacitor between SS and ARTN determines the soft-start timing.
TEST1	9	Input	Digital test pin must always be connected to VPORTN ${ }_{1,2}$.
TEST2	10	Input	Digital test pin must always be connected to VPORTN ${ }_{1,2}$.
EP			Exposed pad. Connected to VPORTN ${ }_{1,2}$ ground.

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Units	Conditions
VPORTP	Input power supply	-0.3	72	V	Voltage with respect to VPORTN ${ }_{1,2}$
RTN ARTN	Analog ground supply 2	-0.3	72	V	Pass-switch in off-state (Voltage with respect to VPORTN ${ }_{1,2}$)
VDDH	Internal regulator output	-0.3	17	V	Voltage with respect to ARTN
VDDL	Internal regulator output	-0.3	3.6	V	Voltage with respect to ARTN
CLASS	Analog output	-0.3	3.6	V	Voltage with respect to VPORTN ${ }_{1,2}$
INRUSH	Analog output	-0.3	3.6	V	Voltage with respect to VPORTN ${ }_{1,2}$
ILIM1	Analog output	-0.3	3.6	V	Voltage with respect to VPORTN ${ }_{1,2}$
UVLO	Analog input	-0.3	3.6	V	Voltage with respect to VPORTN ${ }_{1,2}$
OSC	Analog output	-0.3	3.6	V	Voltage with respect to ARTN
COMP	Analog input / output	-0.3	3.6	V	Voltage with respect to ARTN
FB	Analog input	-0.3	3.6	V	Voltage with respect to ARTN
CS	Analog input	-0.3	3.6	V	Voltage with respect to ARTN
SS	Analog input	-0.3	3.6	V	Voltage with respect to ARTN
NC	Open pin				
$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	Digital inputs	-0.3	3.6	V	Voltage with respect to VPORTN ${ }_{1,2}$
$\mathrm{T}_{\text {A }}$	Ambient temperature	-40	85	${ }^{\circ} \mathrm{C}$	
T_{J}	Junction temperature	-	150	${ }^{\circ} \mathrm{C}$	
T_{J}-TSD	Junction temperature (Note 1)	-	175	${ }^{\circ} \mathrm{C}$	Thermal shutdown condition
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-55	150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {өJA }}$	Thermal Resistance, Junction to Air (Note 2)		37.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Exposed pad connected to VPORTN ${ }_{1,2}$ ground
ESD-HBM	Human Body Model	4	-	kV	per JEDEC Standard JESD22
ESD-CDM	Charged Device Model	750	-	V	
ESD-MM	Machine Model	300	-	V	
LU	Latch-up	± 200	-	mA	per JEDEC Standard JESD78
ESD-SYS	System ESD (contact/air) (Note 3)	8/15	-	kV	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. T_{J}-TSD allowed during error conditions only. It is assumed that this maximum temperature condition does not occur more than 1 hour cumulative during the useful life for reliability reasons.
2. Mounted on a 1S2P (3 layer) test board with copper coverage of 25 percent for the signal layers and 90 percent copper coverage for the inner planes at an ambient temperature of $85^{\circ} \mathrm{C}$ in still air. Refer to JEDEC JESD51-7 for details.
3. Surges per EN61000-4-2, 1999 applied between RJ-45 and output ground and between adapter input and output ground of the evaluation board. The specified values are the test levels and not the failure levels.

Recommended Operating Conditions

Operating conditions define the limits for functional operation and parametric characteristics of the device. Note that the functionality of the device outside the operating conditions described in this section is not warranted. Operating outside the recommended operating conditions for extended periods of time may affect device reliability.

All values concerning the DC-DC controller, VDDH and VDDL blocks are with respect to ARTN. All others are with respect to VPORTN ${ }_{1,2}$ (unless otherwise noted).

Table 3. OPERATING CONDITIONS

| Symbol | Parameter | Min. | Typ. | Max. | Units | Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | INPUT SUPPLY

VPORT	Input supply voltage	0		57	V	VPORT $=$ VPORTP - VPORTN $_{1,2}$

SIGNATURE DETECTION

Vsignature	Input supply voltage signature detection range	1.4		9.5	V	
Rsignature	Signature resistance (Note 4)	23.75		26.25	$\mathrm{k} \Omega$	
Offset_current	I_VportP + I_Rtn	-	1.8	5	$\mu \mathrm{~A}$	$\mathrm{VPORTP}=\mathrm{RTN}=1.4 \mathrm{~V}$
Sleep_current	I_VportP + I_Rtn	-	15	25	$\mu \mathrm{~A}$	VPORTP $=$ RTN $=9.5 \mathrm{~V}$

CLASSIFICATION

Vcl	Input supply voltage classification range	13		20.5	V	
Iclass0	Class 0: Rclass $10 \mathrm{k} \Omega$ (Note 5)	0	-	4	mA	Iclass0 = I_VportP + I_Rdet
Iclass1	Class 1: Rclass 130Ω (Note 5)	9	-	12	mA	Iclass1 = I_VportP + I_Rdet
Iclass2	Class 2: Rclass 69.8Ω (Note 5)	17	-	20	mA	Iclass2 = I_VportP + I_Rdet
Iclass3	Class 3: Rclass 44.2Ω (Note 5)	26	-	30	mA	Iclass3 = I_VportP + I_Rdet
Iclass4	Class 4: Rclass 30.9Ω (Note 5)	36	-	44	mA	Iclass4 = I_VportP + I_Rdet
$\mathrm{IDC}_{\text {class }}$	Internal current consumption during classification (Note 6)	-	600	-	$\mu \mathrm{A}$	For information only

UVLO

Vuvlo_on	Default turn on voltage (VportP rising)		38	40	V	UVLO pin tied to VPORTN $_{1,2}$
Vuvlo_off	Default turn off voltage (VportP falling)	29.5	32	-	V	UVLO pin tied to $^{\text {VPORTN }_{1,2}}$
Vhyst_int	UVLO internal hysteresis	-	6	-	V	UVLO pin tied to $_{\text {VPORTN }_{1,2}}$
Vuvlo_pr	UVLO external programming range	25	-	50	V	UVLO pin connected to the resistor divider (R1 \& R2). For information only
Vhyst_ext	UVLO external hysteresis	-	15	-	$\%$	UVLO pin connected to the resistor divider (R1 \& R2)
Uvlo_Filter	UVLO on/off filter time	-	90	-	$\mu \mathrm{S}$	

4. Test done according to the IEEE802.3af 2 Point Measurement. The minimum probe voltages measured at the PoE-PD are 1.4 V and 2.4 V , and the maximum probe voltages are 8.5 V and 9.5 V .
5. Measured with an external Rdet of $25.5 \mathrm{k} \Omega$ between VPORTP and $\mathrm{VPORTN}_{1,2}$, and for $13 \mathrm{~V}<\mathrm{VPORT}<20.5 \mathrm{~V}$ (with VPORT $=\mathrm{VPORTP}$ - VPORTN $_{1,2}$). Resistors are assumed to have 1% accuracy.
6. This typical current excludes the current in the Rclass and Rdet external resistors.

Table 3. OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions

PASS-SWITCH AND CURRENT LIMITS

Ron	Pass-switch Rds-on	-	0.6	1.2	Ω	Max Ron specified at $\mathrm{Tj}=130^{\circ} \mathrm{C}$
I_Rinrush1	Rinrush $=150 \mathrm{k} \Omega$ (Note 7)	95	125	155	mA	Measured at RTN- VPORTN $_{1,2}=3 \mathrm{~V}$
I_Rinrush2	Rinrush $=57.6 \mathrm{k} \Omega$ (Note 7)	260	310	360	mA	Measured at RTN- $_{\text {VPORTN }_{1,2}=3 \mathrm{~V}}$ I_Rilim1 Rilim1 = 84.5 $\mathrm{k} \Omega$ (Note 7)

INRUSH AND ILIM1 CURRENT LIMIT TRANSITION

Vds_pgood	VDS required for power good status	0.8	1	1.2	V	RTN-VPORTN ${ }_{1,2}$ falling; voltage with respect to VPORTN ${ }_{1,2}$
Vds_pgood_hyst	VDS hysteresis required for power good status	-	8.2	-	V	Voltage with respect to VPORTN $_{1,2}$

VDDH REGULATOR

VDDH_reg	Regulator output voltage (Notes 8 and 9) Ivddh_load + IvddI_load < 10 mA with 0 < IvddI_load < 2.25 mA	8.4	9	9.6	V	
VDDH_Off	Regulator turn-off voltage	-	VDDH_reg +0.5 V	-	V	For information only
VDDH_lim	VDDH regulator current limit (Notes 8 and 9)	13	-	26	mA	
VDDH_Por_R	VDDH POR level (rising)	7.3	-	8.3	V	
VDDH_Por_F	VDDH POR level (falling)	6	-	7	V	
VDDH_ovlo	VDDH over-voltage level (rising)	16	-	18.5	V	

VDDL REGULATOR

VDDL_reg	Regulator output voltage (Notes 8 and 9) $0<$ Ivddl_load < 2.25 mA with lvddh_load + IvddI_load < 10 mA	3.05	3.3	3.55	V	
VDDL_Por_R	VDDL POR level (rising)	VDDL -0.2	-	VDDL -0.02	V	
VDDL_Por_F	VDDL POR level (falling)	2.5	-	2.9	V	

GATE DRIVER

Gate_Tr	GATE rise time (10-90\%)	-	-	50	ns	Cload $=2 \mathrm{nF}$, VDDHreg $=9 \mathrm{~V}$
Gate_Tf	GATE fall time (90-10\%)	-	-	50	ns	Cload $=2 \mathrm{nF}$, VDDHreg $=9 \mathrm{~V}$

PWM COMPARATOR

VCOMP	COMP control voltage range	1.3	-	3	V	For information only

7. The current value corresponds to the PoE-PD input current (the current flowing in the external Rdet and the quiescent current of the device are included). Resistors are assumed to have 1\% accuracy.
8. Power dissipation must be considered. Load on VDDH and VDDL must be limited especially if VDDH is not powered by an auxiliary winding.
9. Ivddl_load = current flowing out of the VDDL pin.

Ivddh_load = current flowing out of the VDDH pin + current delivered to the Gate Driver (function of the frequency, VDDH voltage \& MOSFET gate capacitance).

Table 3. OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
ERROR AMPLIFIER						
Vbg_fb Reference voltage 1.15 1.2 1.25 V Voltage with respect to ARTN Av_ol DC open loop gain - 80 - dB For information only GBW Error amplifier GBW 1 - - MHz For information only						

SOFT-START

Vss	Soft-start voltage range	-	1.15	-	V	
Vss_r	Soft-start low threshold (rising edge)	0.35	0.45	0.55	V	
Iss	Soft-start source current	3	5	7	$\mu \mathrm{~A}$	

CURRENT LIMIT COMPARATOR

CSth	CS threshold voltage	324	360	396	mV	
Tblank	Blanking time	-	100	-	ns	For information only

OSCILLATOR

DutyC	Maximum duty cycle	-	80%	-		Fixed internally
Frange	Oscillator frequency range	100	-	500	kHz	
F_acc	Oscillator frequency accuracy		± 25		$\%$	

CURRENT CONSUMPTION

IvportP $_{1}$	VPORTP internal current consumption (Note 10)	-	2.5	3.5	mA	DC-DC controller off
IvportP $_{2}$	VPORTP internal current consumption (Note 11)	-	4.7	6.5	mA	DC-DC controller on

THERMAL SHUTDOWN

TSD	Thermal shutdown threshold	150	-	-	${ }^{\circ} \mathrm{C} \mathrm{Tj}$	$\mathrm{T}_{\mathrm{J}}=$ junction temperature
Thyst	Thermal hysteresis	-	15	-	${ }^{\circ} \mathrm{C} \mathrm{Tj}$	$\mathrm{T}_{\mathrm{J}}=$ junction temperature

THERMAL RATINGS

T_{A}	Ambient temperature	-40	-	85	${ }^{\circ} \mathrm{C}$	
T_{J}	Junction temperature	-	-	125	${ }^{\circ} \mathrm{C}$	Parametric values guaranteed

10. Conditions
a. No current through the pass-switch
b. DC-DC controller inactive (SS shorted to RTN)
c. No external load on VDDH and VDDL
d. VPORTP $=57 \mathrm{~V}$
11. Conditions
a. No current through the pass-switch
b. Oscillator frequency $=100 \mathrm{kHz}$
c. No external load on VDDH and VDDL
d. Aux winding not used
e. 2 nF on GATE, DC-DC controller enabled
f. $\mathrm{VPORTP}=57 \mathrm{~V}$

DESCRIPTION OF OPERATION

Powered Device Interface

The PD interface portion of the NCP1080 supports the IEEE802.3af defined operating modes: detection signature, current source classification, inrush and operating current limits. In order to give more flexibility to the user and also to keep control of the power dissipation in the NCP1080, both current limits are configurable. The device enters operation once its programmable Vuvlo_on threshold is reached, and operation ceases when the supplied voltage falls below the Vuvlo_off threshold. Sufficient hysteresis and Uvlo filter time are provided to avoid false power on/off cycles due to transient voltage drops on the cable.

Detection

During the detection phase, the incremental equivalent resistance seen by the PSE through the cable must be in the IEEE802.3af standard specification range $(23.75 \mathrm{k} \Omega$ to $26.25 \mathrm{k} \Omega$) for a PSE voltage from 2.7 V to 10.1 V . In order to compensate for the non-linear effect of the diode bridge and satisfy the specification at low PSE voltage, the NCP1080 presents a suitable impedance in parallel with the $25.5 \mathrm{k} \Omega \mathrm{R}_{\text {det }}$ external resistor connected between VPORTP and VPORTN. For some types of diodes (especially Schottky diodes), it may be necessary to adjust this external resistor.

When the Detection_Off level is detected (typically 11.5 V) on VPORTP, the NCP1080 turns on its internal 3.3 V regulator and biasing circuitry in anticipation of the classification phase as the next step.

Classification

Once the PSE device has detected the PD device, the classification process begins. In classification, the PD regulates a constant current source that is set by the external resistor RCLASS value on the CLASS pin. Figure 6 shows the schematic overview of the classification block. The current source is defined as:

$$
I_{\text {class }}=\frac{\mathrm{V}_{\mathrm{bg}}}{\mathrm{R}_{\text {class }}},\left(\text { where } \mathrm{V}_{\mathrm{bg}} \text { is } 1.2 \mathrm{~V}\right)
$$

Figure 6. Classification Block Diagram

Power Mode

When the classification hand-shake is completed, the PSE and PD devices move into the operating mode.

Under Voltage Lock Out (UVLO)

The NCP1080 incorporates an under voltage lock out (UVLO) circuit which monitors the input voltage and determines when to apply power to the DC-DC controller.

To use the default settings for UVLO (see Table 3), the pin UVLO must be connected to VPORTN 1,2 . In this case the signature resistor has to be placed directly between VPORTP and VPORTN 1,2 , as shown in Figure 7.

Figure 7. Default UVLO Settings
To define the UVLO threshold externally, the UVLO pin must be connected to the center of an external resistor divider between VPORTP and VPORTN ${ }_{1,2}$ as shown in Figure 8. The series resistance value of the external resistors must add to $25.5 \mathrm{k} \Omega$ and replaces the internal signature resistor.

Figure 8. External UVLO Configuration

For a Vuvlo_on desired turn-on voltage threshold, R1 and R2 can be calculated using the following equations:

$$
\begin{aligned}
& \mathrm{R} 1+\mathrm{R} 2=\mathrm{R}_{\mathrm{det}} \\
& \mathrm{R} 2=\frac{1.2}{\mathrm{~V}_{\mathrm{ulvo} \text { _on }}} \times \mathrm{R}_{\mathrm{det}}
\end{aligned}
$$

When using the external resistor divider, the NCP1080 has an external reference voltage hysteresis of 15\% typical.

Inrush and Operational Current Limitations

The inrush current limit and the operational current limit are programmed individually by an external Rinrush and Rilim1 resistors respectively connected between INRUSH and VPORTN ${ }_{1,2}$, and between ILIM1 and VPORTN 1,2 as shown in Figure 9.

Figure 9. Current Limitation Configuration (Inrush \& llim1 Pins)

Figure 10. Inrush and Ilim1 Selection Mechanism

When VPORT reaches the UVLO_on level, the Cpd capacitor is charged with the INRUSH current (in order to limit the internal power dissipation of the pass-switch). Once the Cpd capacitor is fully charged, the current limit switches from the inrush current to the current limit level (ilim1) as shown in Figure 10. This transition occurs when both following conditions are satisfied:

1. The VDS of the pass-switch is below the Vds_pgood low level (1 V typical).
2. The pass-switch is no longer in current limit mode, meaning the gate of the pass-switch is "high" (above 2 V typical).
The operational current limit will stay selected as long as Vds_pgood is true (meaning that RTN-VPORTN 1,2 is below the high level of Vds_pgood). This mechanism allows a current level transition without any current spike in the pass-switch because the operational current limit (ilim1) is
enabled once the pass-switch is not limiting the current anymore, meaning that the Cpd capacitor is fully charged.

Thermal Shutdown

The NCP1080 includes thermal protection which shuts down the device in case of high power dissipation. Once the thermal shutdown (TSD) threshold is exceeded, following blocks are turned off:

- DC-DC controller
- Pass-switch
- VDDH and VDDL regulators
- CLASS regulator

When the TSD error disappears and if the input line voltage is still above the UVLO level, the NCP1080 automatically restarts with the current limit set in the inrush state, the DC-DC controller is disabled and the Css
(soft-start capacitor) discharged. The DC-DC controller becomes operational as soon as RTN-VPORTN $\mathrm{R}_{1,2}$ is below the Vds_pgood threshold.

DC-DC Converter Controller

The NCP1080 implements a current mode DC-DC converter controller which is illustrated in Figure 11.

Figure 11. DC-DC Controller Block Diagram

Internal VDDH and VDDL Regulators and Gate Driver

An internal linear regulator steps down the VPORTP voltage to a 9 V output on the VDDH pin. VDDH supplies the internal gate driver circuit which drives the GATE pin and the gate of the external power MOSFET. The NCP1080 gate driver supports an external MOSFET with high Vth and high input gate capacitance. A second LDO regulator steps down the VDDH voltage to a 3.3 V output on VDDL. VDDL powers the analog circuitry of the $\mathrm{DC}-\mathrm{DC}$ controller.

In order to prevent uncontrolled operations, both regulators include power-on-reset (POR) detectors which prevent the DC-DC controller from operating when either VDDH or VDDL is too low. In addition, an over-voltage lockout (OVLO) on the VDDH supply disables the gate driver in case of an open-loop converter with a configuration using the bias winding of the transformer (see Figure 4).

Both VDDH and VDDL regulators turn on as soon as VPORT reaches the Vuvlo_on threshold.

Error Amplifier

In non-isolated converter topologies, the high gain internal error amplifier of the NCP1080 and the internal 1.2 V reference voltage regulate the $\mathrm{DC}-\mathrm{DC}$ output voltage. In this configuration, the feedback loop compensation network should be inserted between the FB and COMP pins as shown in Figures 3, 4 and 5.

In isolated topologies the error amplifier is not used because it is already implemented externally with the shunt regulator on the secondary side of the $\mathrm{DC}-\mathrm{DC}$ controller (see Figure 2). Therefore the FB pin must be strapped to ARTN and the output transistor of the opto-coupler has to be connected on the COMP pin where an internal $5 \mathrm{k} \Omega$ pull-up resistor is tied to the VDDL supply (see Figure 11).

Soft-Start

The soft-start function provided by the NCP1080 allows the output voltage to ramp up in a controlled fashion, eliminating output voltage overshoot. This function is programmed by connecting a capacitor C_{SS} between the SS and ARTN pins.

While the DC-DC controller is in POR, the capacitor CSS is fully discharged. After coming out of POR, an internal current source of $5 \mu \mathrm{~A}$ typically starts charging the capacitor $\mathrm{C}_{\text {SS }}$ to initiate soft-start. When the voltage on SS pin has reached 0.45 V (typical), the gate driver is enabled and DC-DC operation starts with a duty cycle limit which increases with the SS pin voltage. The soft-start function is finished when the SS pin voltage goes above 1.6 V for which the duty cycle limit reaches its maximum value of 80%.

Soft-start can be programmed by using the following equation:

$$
\mathrm{t}_{\mathrm{SS}}(\mathrm{~ms})=0.23 \times \mathrm{C}_{\mathrm{SS}}(\mathrm{nF})
$$

Current Limit Comparator

The NCP1080 current limit block behind the CS pin senses the current flowing in the external MOSFET for current mode control and cycle-by-cycle current limit. This is performed by the current limit comparator which, on the CS pin, senses the voltage across the external Rcs resistor located between the source of the MOSFET and the ARTN pin.

The NCP1080 also provides a blanking time function on CS pin which ensures that the current limit and PWM comparators are not prematurely trigged by the current spike that occurs when the switching MOSFET turns on.

Slope Compensation Circuitry

To overcome sub-harmonic oscillations and instability problems that exist with converters running in continuous
conduction mode (CCM) and when the duty cycle is close or above 50%, the NCP1080 integrates a current slope compensation circuit. The amplitude of the added slope compensation is typically 110 mV over one cycle.

As an example, for an operating switching frequency of 250 kHz , the internal slope provided by the NCP1080 is $27.5 \mathrm{mV} / \mu \mathrm{A}$ typically.

DC-DC Controller Oscillator

The frequency is configured with the Rosc resistor inserted between OSC and ARTN, and is defined by the following equation:

$$
\mathrm{R}_{\mathrm{OSC}}(\mathrm{k} \Omega)=\frac{38600}{\mathrm{~F}_{\mathrm{OSC}}(\mathrm{kHz})}
$$

The duty cycle limit is fixed internally at 80%.

TSSOP-20 EP
CASE 948AB-01
ISSUE O

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking.

| DOCUMENT NUMBER: | 98AON30874E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 EXPOSED PAD | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG
NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG
NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C FSL4110LRLX MAX8778ETJ+ NTBV30N20T4G
NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG TEA19362T/1J IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633TE/MG NCV1397ADR2G NCP1246ALD065R2G

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

