NCP1393B

High-Voltage Half-Bridge MOSFET Driver with Inbuilt Oscillator

The NCP1393B is a self-oscillating high voltage MOSFET driver primarily tailored for the applications using half-bridge topology. Due to its proprietary high-voltage technology, the driver accepts bulk voltages up to 600 V . Operating frequency of the driver can be adjusted from 25 kHz to 250 kHz using a single resistor. Adjustable brown-out protection assures correct bulk voltage operating range. An internal 100 ms PFC delay timer guarantees that the main downstream converter will be turned on in the time the bulk voltage is fully stabilized. The device provides fixed dead-time which helps to lower the shoot-through current.

Features

- Wide Operating Frequency Range - from 25 kHz to 250 kHz
- Minimum Frequency Adjust Accuracy $\pm 3 \%$
- Fixed Dead Time - $0.6 \mu \mathrm{~s}$
- Adjustable Brown-out Protection for a Simple PFC Association
- 100 ms PFC Delay Timer
- Latched Input for Severe Fault Conditions, e.g. Overtemperature or OVP
- Internal $16 \mathrm{~V}_{\mathrm{CC}}$ Clamp
- Low Startup Current of $50 \mu \mathrm{~A}$ Maximum
- 1 A / 0.5 A Peak Current Sink / Source Drive Capability
- Operation up to 600 V Bulk Voltage
- Internal Temperature Shutdown
- SOIC-8 Package
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Flat Panel Display Power Converters
- Low Cost Resonant SMPS
- High Power AC/DC Adapters for Notebooks
- Offline Battery Chargers
- Lamp Ballasts

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
-	$=$ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping †
NCP1393BDR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NCP1393B

Figure 2. Internal Circuit Architecture

PIN FUNCTION DESCRIPTION

Pin \#	Pin Name	Function	Pin Description
1	$\mathrm{~V}_{\mathrm{CC}}$	Supplies the Driver	The driver accepts up to 16 V (given by internal zener clamp).
2	Rt	Timing Resistor	Connecting a resistor between this pin and GND, sets the operating frequency
3	BO	Brown-Out	Detects low input voltage conditions. When brought above $\mathrm{V}_{\text {latch }}$, it fully latches off the driver.
4	GND	IC Ground	-
5	$\mathrm{M}_{\text {lower }}$	Low-Side Driver Output	Drives the lower side MOSFET.
6	HB	Half-Bridge Connection	Connects to the half-bridge output.
7	$\mathrm{M}_{\text {upper }}$	High-Side Driver Output	Drives the higher side MOSFET.
8	$\mathrm{~V}_{\text {boot }}$	Bootstrap Pin	The floating supply terminal for the upper stage.

MAXIMUM RATINGS TABLE

Symbol	Rating	Value	Unit
$\mathrm{V}_{\text {bridge }}$	High Voltage Bridge Pin - Pin 6	-1 to +600	V
Vboot Vbridge	Floating Supply Voltage	0 to 20	V
VDRV_HI	High-Side Output Voltage	$\begin{gathered} \text { Vbridge }-0.3 \text { to } \\ \text { Vboot }+0.3 \end{gathered}$	V
VDRV_LO	Low-Side Output Voltage	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
dVbridge/dt	Allowable Output Slew Rate	± 50	V / ns
$I_{\text {cc }}$	Maximum Current that Can Flow into V CC Pin (Pin 1), (Note 1)	20	mA
V_Rt	Rt Pin Voltage	-0.3 to 5	V
	Maximum Voltage, All Pins (Except Pins 4 and 5)	-0.3 to 10	V
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction-to-Air, IC Soldered on $50 \mathrm{~mm}^{2}$ Cooper $35 \mu \mathrm{~m}$	178	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction-to-Air, IC Soldered on $200 \mathrm{~mm}^{2}$ Cooper $35 \mu \mathrm{~m}$	147	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Storage Temperature Range	-60 to +150	${ }^{\circ} \mathrm{C}$
	ESD Capability, Human Body Model (All Pins Except Pins 1, 6, 7 and 8)	2	kV
	ESD Capability, Machine Model (All Pins Except Pins 1, 6, 7 and 8)	200	V

[^0]ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Max} \mathrm{T}_{J}=150^{\circ} \mathrm{C}$,
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$, unless otherwise noted)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
SUPPLY SECTION						
Turn-On Threshold Level, V_{CC} Going Up	1	$\mathrm{VCC}_{\text {ON }}$	10	11	12	V
Minimum Operating Voltage after Turn-On	1	$\mathrm{VCC}_{\text {min }}$	8	9	10	V
Startup Voltage on the Floating Section	1	Vbooton	7.8	8.8	9.8	V
Cutoff Voltage on the Floating Section	1	$\mathrm{Vboot}_{\text {min }}$	7	8	9	V
$\mathrm{V}_{\text {CC }}$ Level at which the Internal Logic gets Reset	1	$\mathrm{VCC}_{\text {reset }}$	-	6.5	-	V
Startup Current, $\mathrm{V}_{\mathrm{CC}}<\mathrm{VCC}_{\mathrm{ON}}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+125^{\circ} \mathrm{C}$	1	$I_{\text {cc }}$	-	-	50	$\mu \mathrm{A}$
Startup Current, $\mathrm{V}_{\mathrm{CC}}<\mathrm{VCC}_{\mathrm{ON}},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }}<0^{\circ} \mathrm{C}$	1	${ }^{\text {cc }}$	-	-	65	$\mu \mathrm{A}$
Internal IC Consumption, No Output Load on Pins 8/7-5/4, Fsw = 100 kHz	1	Icc 1	-	2.2	-	mA
Internal IC Consumption, 1 nF Output Load on Pins $8 / 7-5 / 4, \mathrm{Fsw}=100 \mathrm{kHz}$	1	Icc2	-	3.4	-	mA
Consumption in Fault Mode (Drivers Disabled, $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{CC}(\text { min) }}, \mathrm{R}_{\mathrm{T}}=3.5 \mathrm{k} \Omega$)	1	Icc3	-	2.56	-	mA
Consumption During PFC Delay Period, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+125^{\circ} \mathrm{C}$		Icc^{4}	-	-	400	$\mu \mathrm{A}$
Consumption During PFC Delay Period, $-40^{\circ} \mathrm{C} \leq \mathrm{Tamb}<0^{\circ} \mathrm{C}$		$\mathrm{I}_{\mathrm{cc}} 4$	-	-	470	$\mu \mathrm{A}$
Internal IC Consumption, No Output Load on Pin 8/7 FWs $=100 \mathrm{kHz}$	8	$\mathrm{l}_{\text {boot1 }}$	-	0.3	-	mA
Internal IC Consumption, 1 nF Output Load on Pin 8/7 FWs $=100 \mathrm{kHz}$	8	$l_{\text {boot2 }}$	-	1.44	-	mA
Consumption in Fault Mode (Drivers Disabled, $\mathrm{V}_{\text {boot }}>\mathrm{Vboot}_{\text {min }}$)	8	$\mathrm{l}_{\text {boot3 }}$	-	0.1	-	mA
V ${ }_{\text {cC }}$ Zener Clamp Voltage @ 20 mA	1	$\mathrm{VCC}_{\text {clamp }}$	15.4	16	17.5	V

INTERNAL OSCILLATOR

Minimum Switching Frequency, $\mathrm{R}_{\mathrm{t}}=35 \mathrm{k} \Omega$ on Pin 2, $\mathrm{D}_{\mathrm{T}}=600 \mathrm{~ns}$	2	$\mathrm{~F}_{\mathrm{SW}} \min$	24.25	25	25.75	kHz
Maximum Switching Frequency, $\mathrm{R}_{\mathrm{t}}=3.5 \mathrm{k} \Omega$ on Pin 2, $\mathrm{D}_{\mathrm{T}}=600 \mathrm{~ns}$	2	$\mathrm{~F}_{\mathrm{SW}} \max$	208	245	282	kHz
Reference Voltage for all Current Generations	2	$\mathrm{~V}_{\text {ref }} \mathrm{RT}$	3.33	3.5	3.67	V
Internal Resistance Discharging $\mathrm{C}_{\text {soft-start }}$	2	Rt $_{\text {discharge }}$	-	500	-	Ω
Operating Duty Cycle Symmetry	5,7	DC	48	50	52	$\%$

NOTE: Maximum capacitance directly connected to Pin 2 must be under 100 pF .
DRIVE OUTPUT

Output Voltage Rise Time @ CL = 1 nF, 10-90\% of Output Signal	5,7	$\mathrm{~T}_{\mathrm{r}}$	-	40	-	ns
Output Voltage Fall Time @ CL =1 nF, 10-90\% of Output Signal	5,7	$\mathrm{~T}_{\mathrm{f}}$	-	20	-	ns
Source Resistance	5,7	R_{OH}	-	12	-	Ω
Sink Resistance	5,7	R_{OL}	-	5	-	Ω
Dead-Time (Measured Between 50\% of Rise and Fall Edge)	5,7	$\mathrm{~T}_{-}$dead	540	610	720	ns
Leakage Current on High Voltage Pins to GND (600 Vdc)	$6,7,8$	IHV_Leak	-	-	5	$\mu \mathrm{~A}$

PROTECTION

Brown-Out Input Bias Current	3	$\mathrm{IBO}_{\text {bias }}$	-	0.01	-	$\mu \mathrm{A}$
Brown-Out Level	3	$\mathrm{~V}_{\mathrm{BO}}$	0.95	1	1.05	V
Hysteresis Current, $\mathrm{V}_{\text {pin3 }}$ < VBO	3	I_{BO}	15.6	18.2	20.7	$\mu \mathrm{~A}$
Latching Voltage on BO Pin	3	$\mathrm{~V}_{\text {latch }}$	1.9	2	2.1	V
Propagation Delay Before Drivers are Stopped	3	EN Delay	-	20	-	$\mu \mathrm{s}$
Delay Before Any Driver Restart	-	PFC Delay	-	100	-	ms
Temperature Shutdown	-	TSD	140	-	-	${ }^{\circ} \mathrm{C}$
Hysteresis	-	TSD $_{\text {hyste }}$	-	30	-	${ }^{\circ} \mathrm{C}$

2. Maximum capacitance directly connected to Pin 2 must be under 100 pF .

Figure 3. $\mathbf{V}_{\text {CCon }}$

Figure 5. $\mathrm{V}_{\text {BOOTon }}$

Figure 7. $\mathbf{R O H}_{\text {OH }}$

Figure 4. $\mathrm{V}_{\mathrm{CC} \text { min }}$

Figure 6. $\mathrm{V}_{\mathrm{BOOT} \text { min }}$

Figure 8. $\mathbf{R}_{\mathbf{O L}}$

Figure 9. FSWmax $^{\text {S }}$

Figure 11. ICC_startup

Figure 13. $\mathbf{R}_{\text {t_discharge }}$

Figure 10. FsWmin

Figure 12. ICC4

Figure 14. $\mathrm{T}_{\text {dead }}$

NCP1393B

Figure 15. PFC $_{\text {delay }}$

Figure 17. V_{BO}

Figure 19. VCc_clamp

Figure 16. $\mathrm{V}_{\text {LATCH }}$

Figure 18. I_{BO}

Figure 20. I_{rt} and Appropriate Frequency

APPLICATION INFORMATION

The NCP1393 is primarily intended to drive low cost half-bridge applications and especially resonant half-bridge applications. The IC includes several features that help the designer to cope with resonant SPMS design. All features are described thereafter:

- Wide Operating Frequency Range: The internal current controlled oscillator is capable to operate over wide frequency range up to 250 kHz . Minimum frequency accuracy is $\pm 3 \%$.
- Fixed Dead-Time: The internal dead-time helping to fight with cross conduction between the upper and lower power transistors. Three versions with different dead-time values are available to cover wide range of applications.
- $\mathbf{1 0 0} \mathbf{~ m s ~ P F C ~ T i m e r : ~ F i x e d ~ d e l a y ~ i s ~ p l a c e d ~ t o ~ I C ~}$ operation whenever the driver restarts $\left(\mathrm{VCC}_{\mathrm{ON}}\right.$ or BO_OK detect events). This delay assures that the bulk voltage will be stabilized in the time the driver provides pulses on the outputs. Another benefit of this delay is that the soft start capacitor will be full discharged before any restart.
- Brown-Out Detection: The BO input monitors bulk voltage level via resistor divider and thus assures that the application is working only for wanted bulk voltage band. The BO input sinks current of $18.2 \mu \mathrm{~A}$ until the Vref $_{\mathrm{BO}}$ threshold is reached. Designer can thus adjust the bulk voltage hysteresis according to the application needs.
- Latched Input: The latched comparator input is connected in parallel to the BO terminal to allow the designer latch the IC if necessary - overvoltage or overtemperature can thus be easily connected. The supply voltage has to be cycled down below $\mathrm{VCC}_{\text {reset }}$ threshold, or V_{BO} diminished under V_{BO} level to enable another start attempt.
- Internal $\mathbf{V}_{\mathbf{C C}}$ Clamp: The internal zener clamp offers a way to prepare passive voltage regulator to maintain V_{CC} voltage at 16 V in case the controller is supplied from unregulated power supply or from bulk capacitor.
- Low Startup Current: This device features maximum startup current of $50 \mu \mathrm{~A}$ which allows the designer to use high value startup resistor for applications when driver is supplied from the auxiliary winding. Power dissipation of startup resistor is thus significantly reduced.

Current Controlled Oscillator

The current controlled oscillator features a high-speed circuitry allowing operation from 50 kHz up to 500 kHz . However, as a division by two internally creates the two Q and $\overline{\mathrm{Q}}$ outputs, the final effective signal on output Mlower and Mupper switches between 25 kHz and 250 kHz . The VCO is configured in such a way that if the current that flows out from the Rt pin increases, the switching frequency also goes up. Figure 21 shows the architecture of this oscillator.

Figure 21. The Internal Current Controlled Oscillator Architecture

The internal timing capacitor Ct is charged by current which is proportional to the current flowing out from the Rt pin. The discharging current I_{DT} is applied when voltage on this capacitor reaches 2.5 V . The output drivers are disabled during discharge period so the dead time length is given by the discharge current sink capability. Discharge sink is disabled when voltage on the timing capacitor reaches zero and charging cycle starts again. The charging current and thus also whole oscillator is disabled during the PFC delay period to keep the IC consumption below $400 \mu \mathrm{~A}$.

This is valuable for applications that are supplied from auxiliary winding and V_{CC} capacitor is supposed to provide energy during PFC delay period.

For the resonant applications and light ballast applications it is necessary to adjust minimum operating frequency with high accuracy. The designer also needs to limit maximum operating and startup frequency. All these parameters can be adjusted using few external components connected to the Rt pin as depicted in Figure 22.

NCP1393

Figure 22. Typical Rt Pin Connection

The minimum switching frequency is given by the Rt resistor value. This frequency is reached if there is no optocoupler or current feedback action and soft start period has been already finished. The maximum switching frequency excursion is limited by the $\mathrm{Rf}_{\max }$ selection. Note that the $\mathrm{F}_{\max }$ value is influenced by the optocoupler saturation voltage value. Resistor $\mathrm{Rf}_{\text {start }}$ together with capacitor CSS prepares the soft start period after PFC timer elapses. The Rt pin is grounded via an internal switch during the PFC delay period to assure that the soft start capacitor will be fully discharged via Rfstart resistor.

There is a possibility to connect other control loops (like current control loop) to the Rt pin. The only one limitation lies in the Rt pin reference voltage which is $\mathrm{Vref}_{\mathrm{Rt}}=3.5 \mathrm{~V}$. Used regulator has to be capable to work with voltage lower than $\operatorname{Vref}_{\mathrm{Rt}}$.

The TLV431 shunt regulator is used in the example from Figure 22 to prepare current feedback loop. Diode D1 is used to enable regulator biasing via resistor $\mathrm{R}_{\text {bias }}$. Total saturation voltage of this solution is $1.25+0.6=1.85 \mathrm{~V}$ for room temperature. Shottky diode will further decrease saturation voltage. $\mathrm{Rf}_{\text {max }}$ - OCP resistor value, limits the maximum frequency that can be pushed by this regulation loop. This parameter is not temperature stable because of the D1 temperature drift.

Brown-Out Protection

The Brown-Out circuitry (BO) offers a way to protect the application from low DC input voltages. Below a given level, the controller blocks the output pulses, above it, it authorizes them. The internal circuitry, depicted by Figure 23, offers a way to observe the high-voltage (HV) rail.

Figure 23. The internal Brown-Out Configuration with an Offset Current Sink

A resistive divider made of $\mathrm{R}_{\text {upper }}$ and $\mathrm{R}_{\text {lower }}$, brings a portion of the HV rail on Pin 3. Below the turn-on level, the $18.2 \mu \mathrm{~A}$ current $\sin k\left(\mathrm{I}_{\mathrm{BO}}\right)$ is on. Therefore, the turn-on level is higher than the level given by the division ratio brought by the resistive divider. To the contrary, when the
internal BO_OK signal is high (PFC timer runs or Mlower and Mupper pulse), the I_{BO} sink is deactivated. As a result, it becomes possible to select the turn-on and turn-off levels via a few lines of algebra:
I_{BO} is ON

$$
\begin{equation*}
V_{r e f}^{B O}=V_{\text {bulk } 1} \cdot \frac{R_{\text {lower }}}{R_{\text {lower }}+R_{\text {upper }}}-I_{B O} \cdot\left(\frac{R_{\text {lower }} \cdot R_{\text {upper }}}{R_{\text {lower }}+R_{\text {upper }}}\right) \tag{eq.1}
\end{equation*}
$$

I_{BO} is OFF

$$
\begin{equation*}
\mathrm{Vref}_{\mathrm{BO}}=\mathrm{V}_{\text {bulk2 }} \cdot \frac{\mathrm{R}_{\text {lower }}}{R_{\text {lower }}+\mathrm{R}_{\text {upper }}} \tag{eq.2}
\end{equation*}
$$

We can extract $\mathrm{R}_{\text {lower }}$ from Equation 2 and plug it into Equation 1, then solve for $\mathrm{R}_{\text {upper }}$:

$$
\begin{gather*}
\mathrm{R}_{\text {lower }}=\mathrm{Vref}_{\mathrm{BO}} \cdot \frac{\mathrm{~V}_{\text {bulk1 }}-\mathrm{V}_{\text {bulk2 }}}{\mathrm{I}_{\mathrm{BO}} \cdot\left(\mathrm{~V}_{\text {bulk2 }}-\mathrm{Vref}_{\mathrm{BO}}\right)} \tag{eq.3}\\
\mathrm{R}_{\text {upper }}=\mathrm{R}_{\text {lower }} \cdot \frac{\mathrm{V}_{\text {bulk2 }}-\mathrm{Vref}_{\mathrm{BO}}}{\operatorname{Vref}_{\mathrm{BO}}} \tag{eq.4}
\end{gather*}
$$

If we decide to turn-on our converter for $V_{\text {bulk1 }}$ equals 350 V and turn it off for $\mathrm{V}_{\text {bulk2 }}$ equals 250 V , then for $\mathrm{I}_{\mathrm{BO}}=18.2 \mu \mathrm{~A}$ and $\mathrm{Vref}_{\mathrm{BO}}=1.0 \mathrm{~V}$ we obtain:
$\mathrm{R}_{\text {upper }}=5.494 \mathrm{M} \Omega$
$\mathrm{R}_{\text {lower }}=22.066 \mathrm{~V}$
The bridge power dissipation is $400^{2} / 5.517 \mathrm{M} \Omega=29 \mathrm{~mW}$ when front-end PFC stage delivers 400 V . Figure 24 simulation result confirms our calculations.

Figure 24. Simulation Results for 350/250 ON/OFF Brown-Out Levels

Figure 25. BO Input Functionality $-\mathrm{V}_{\text {bulk2 }}<\mathrm{V}_{\text {bulk }}<\mathrm{V}_{\text {bulk1 }}$

Figure 26. BO Input Functionality $-\mathrm{V}_{\text {bulk2 }}<\mathrm{V}_{\text {bulk }}<\mathrm{V}_{\text {bulk1 }}$, PFC Start Follows

Figure 27. BO Input Functionality $-\mathrm{V}_{\text {bulk }}>\mathrm{V}_{\text {bulk1 }}$

Figure 28. BO Input Functionality $-\mathrm{V}_{\text {bulk }}<\mathrm{V}_{\text {bulk2 }}$, PFC Start Follows

The I_{BO} current sink is turned ON for 50 ms after any controller restart to let the BO input voltage stabilize (there can be connected big capacitor to the BO input and the I_{BO} is only $18.2 \mu \mathrm{~A}$ so it will take some time to discharge). Once the 50 ms one shoot pulse ends the BO comparator is supposed to either hold the I_{BO} sink turned ON (if the bulk voltage level is not sufficient) or let it turned OFF (if the bulk voltage is higher than $\mathrm{V}_{\text {bulk1 }}$). See Figures 25 through 28 for better understanding on how the BO input works.

Latched-Off Protection

There are some situations where the converter shall be fully turned-off and stay latched. This can happen in presence of an overvoltage (the feedback loop is drifting) or when an overtemperature is detected. Due to the addition of a comparator on the BO Pin, a simple external circuit can lift up this pin above $\mathrm{V}_{\text {latch }}$ (2 V typical) and permanently disable pulses. The V_{CC} needs to be cycled down below 6.5 V typically to reset the controller.

Figure 29. Adding a Comparator on the BO Pin Offers a Way to Latch-Off the Controller

On Figure 29, Q1 is blocked and does not bother the BO measurement as long as the NTC and the optocoupler are not activated. As soon as the secondary optocoupler senses an

The High-Voltage Driver

Figure 30 shows the internal architecture of the high-voltage section. The device incorporates an upper

OVP condition, or the NTC reacts to a high ambient temperature, Q1 base is brought to ground and the BO Pin goes up, permanently latching off the controller.

UVLO circuitry that makes sure enough V_{gs} is available for the upper side MOSFET. The V_{CC} for floating driver section
is provided by $\mathrm{C}_{\text {boot }}$ capacitor that is refilled by external bootstrap diode.

Figure 30. The Internal High-Voltage Section of the NCP1393

The A and B outputs are delivered by the internal logic, as depicted in block diagram. This logic is constructed in such a way that the $\mathrm{M}_{\text {lower }}$ driver starts to pulse firs after any driver restart. The bootstrap capacitor is thus charged during first pulse. A delay is inserted in the lower rail to ensure good
matching between these propagating signals. As stated in the maximum rating section, the floating portion can go up to 600 Vdc and makes the IC perfectly suitable for offline applications featuring a 400 V PFC front-end stage.

SOLDERING FOOTPRINT＊

GENERIC
MARKING DIAGRAM＊
NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006） PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	${ }^{\circ}$	$8{ }^{\circ}$	0
	8	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

8 月且且且	8 月且且且
XXXXXX	XXXXXX
AYWW	AYWW
\＃$\because 甘 甘$	1 \＃\＃\＃
Discrete	Discrete （Pb－Free）

XXXXX＝Specific Device Code
A＝Assembly Location
L＝Wafer Lot
＝Year WW Work
＝Work Week
$=$ Work Week \quad＝Pb－Free Package
$=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-\mathrm{Free}$ indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．
＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

STYLES ON PAGE 2

| DOCUMENT NUMBER： | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontrolled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－8 NB | PAGE 1 OF 2 |

[^1]STYLE 1:

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:

PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE

SOURCE
GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10U
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
CATHODE 2
CATHODE 3
CATHODE 4
CATHODE 5
COMMON ANODE
COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
IOUT
STYLE 29:
PIN 1. BASE, DIE \#1
EMITTER, \#1
BASE, \#2
EMITTER, \#2
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#1
COLLECTOR, \#1

STYLE 2:
PIN 1. COLIECTOR, DIE,
COLLECTOR, \#1
COLLECTOR, \#1
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#2
BASE, \#2
EMITTER, \#2
BASE, \#1
EMITTER, \#1
STYLE 6:
PIN 1. SOURCE
DRAIN
DRAIN
DRAIN
SOURCE
SOURCE
. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
BIAS 1 OUTPUT GROUND GROUND BIAS 2 7. INPUT 8. GROUND

STYLE 14:
PIN 1. N-SOURCE
N-GATE
P-SOURCE
P-GATE
P-DRAIN
P-DRAIN
. N-DRAIN
8. N-DRAIN

STYLE 18:
PIN 1. ANODE
2. ANODE

SOURCE
GATE
DRAIN
DRAIN
7. CATHODE
8. CATHODE

STYLE 22:
PIN 1. I/O LINE 1
COMMON CATHODE/VCC
COMMON CATHODE/VCC
I/O LINE 3
COMMON ANODE/GND
I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$

ENABLE
ILIMIT
SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
. GATE 1

STYLE 3
PIN

1. DRAIN, DIE \#1
2. DRAIN, \#1
3. DRAIN, \#2

DRAIN, \#2
5. GATE, \#2
6. SOURCE, \#2
7. GATE, \#1
8. SOURCE, \#

STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE
3. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:

PIN 1. ILIMIT
2. OVLO

UVLO
INPUT+
SOURCE
SOURCE
SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
7. ANODE
8. COMMON CATHODE

STYLE 8

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12:

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#
2. BASE, DIE \#1
3. EMITTER, DIE \#
3. EMITTER, DIE
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIIC_OFF
3. DASIC_SW_DET
4. GND
5. V MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

[^2] rights of others.
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 1. This device contains internal zener clamp connected between V_{CC} and $G N D$ terminals. Current flowing into the V_{Cc} pin has to be limited by an external resistor when device is supplied from supply which voltage is higher than $\mathrm{VCC}_{\text {clamp }}$ (16 V typically). The I_{CC} parameter is specified for $\mathrm{VBO}=0 \mathrm{~V}$.
[^1]: ON Semiconductor and（IN）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^2]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

