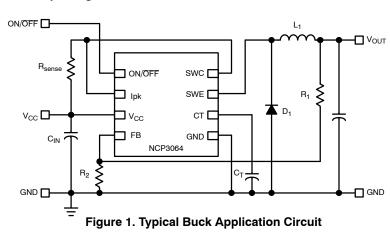
# Inverting Converter, Switching Regulator - Buck Boost, ON/OFF Function

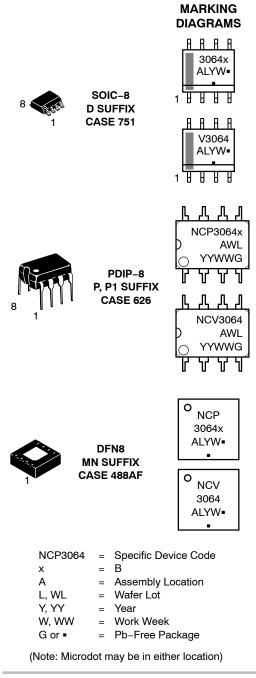
## 1.5 A


The NCP3064 Series is a higher frequency upgrade to the popular MC33063A and MC34063A monolithic DC–DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step–Down and Step–Up and Voltage–Inverting applications with a minimum number of external components. The ON/OFF pin provides a low power shutdown mode.

### Features

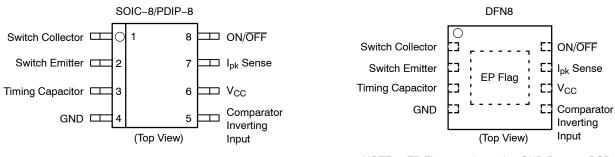
- Input Voltage Range from 3.0 V to 40 V
- Logic Level Shutdown Capability
- Low Power Standby Mode, Typical 100 μA
- Output Switch Current to 1.5 A
- Adjustable Output Voltage Range
- 150 kHz Frequency Operation
- Precision 1.5% Reference
- Internal Thermal Shutdown Protection
- Cycle–by–Cycle Current Limiting
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These are Pb-Free Devices

### Applications


- Step-Down, Step-Up and Inverting supply applications
- High Power LED Lighting
- Battery Chargers






### **ON Semiconductor®**

http://onsemi.com



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.





NOTE: EP Flag must be tied to GND Pin 4 on PCB

Figure 3. Pin Connections

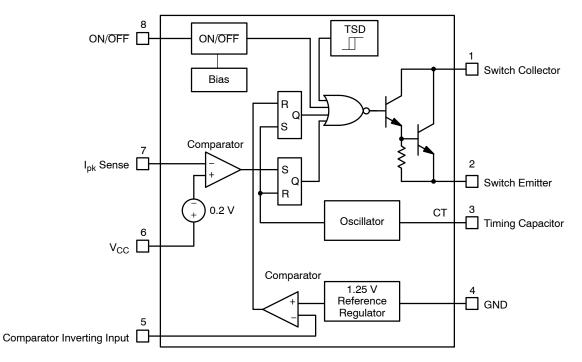



Figure 4. Block Diagram

#### **PIN DESCRIPTION**

| Pin No. | Pin Name                      | Description                                                                                                                                                             |
|---------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Switch Collector              | Internal Darlington switch collector                                                                                                                                    |
| 2       | Switch Emitter                | Internal Darlington switch emitter                                                                                                                                      |
| 3       | Timing Capacitor              | Timing Capacitor Oscillator Input, Timing Capacitor                                                                                                                     |
| 4       | GND                           | Ground pin for all internal circuits                                                                                                                                    |
| 5       | Comparator<br>Inverting Input | Inverting input pin of internal comparator                                                                                                                              |
| 6       | V <sub>CC</sub>               | Voltage supply                                                                                                                                                          |
| 7       | I <sub>pk</sub> Sense         | Peak Current Sense Input to monitor the voltage drop across an external resistor to limit the peak current through the circuit                                          |
| 8       | ON/OFF                        | ON/OFF Pin. Pulling this pin to High level turns the device in Operating. To switch into mode with low current consumption this pin has to be in Low level or floating. |

#### MAXIMUM RATINGS (measured vs. Pin 4, unless otherwise noted)

| RATING                                                                   | SYMBOL              | VALUE                             | UNIT |
|--------------------------------------------------------------------------|---------------------|-----------------------------------|------|
| V <sub>CC</sub> (Pin 6)                                                  | V <sub>CC</sub>     | -0.3 to 42                        | V    |
| Comparator Inverting Input (Pin 5)                                       | V <sub>CII</sub>    | –0.3 to $V_{CC}$                  | V    |
| Darlington Switch Emitter (Pin 2) (Transistor OFF)                       | V <sub>SWE</sub>    | –0.6 to $V_{CC}$                  | V    |
| Darlington Switch Collector (Pin 1)                                      | V <sub>SWC</sub>    | -0.3 to 42                        | V    |
| Darlington Switch Collector to Emitter (Pins 1 and 2)                    | V <sub>SWCE</sub>   | -0.3 to 42                        | V    |
| Darlington Switch Peak Current                                           | I <sub>SW</sub>     | 1.5                               | А    |
| I <sub>pk</sub> Sense Voltage (Pin 7)                                    | V <sub>IPK</sub>    | –0.3 to (V <sub>CC</sub> + 0.3 V) | V    |
| Timing Capacitor Pin Voltage (Pin 3)                                     | V <sub>TC</sub>     | -0.2 to +1.4                      | V    |
| Moisture Sensitivity Level                                               | MSL                 | 1                                 |      |
| Lead Temperature Soldering<br>Reflow (SMD Styles Only), Pb-Free Versions | T <sub>SLD</sub>    | 260                               | °C   |
| ON/OFF Pin Voltage                                                       | V <sub>ON/OFF</sub> | (–0.3 to 25) < V <sub>CC</sub>    | V    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### THERMAL CHARACTERISTIC

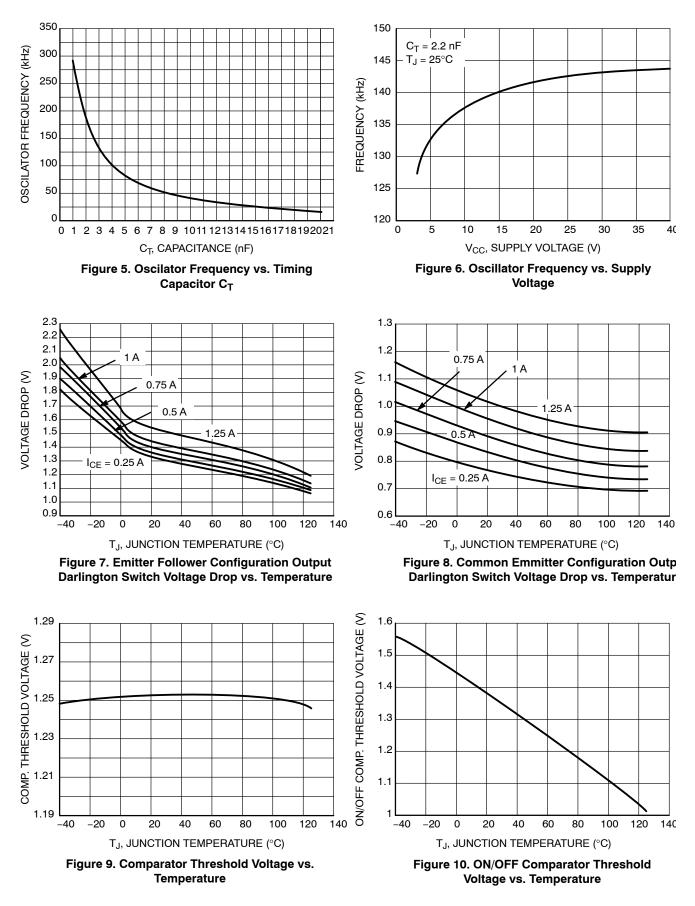
|                         | Rating                                                                    | Symbol                               | Value                   | Unit |
|-------------------------|---------------------------------------------------------------------------|--------------------------------------|-------------------------|------|
| PDIP-8 (Note 5) Therma  | al Resistance Junction-to-Air                                             | $R_{\theta JA}$                      | 100                     | °C/W |
| SOIC-8 (Note 5)         | Thermal Resistance Junction-to-Air<br>Thermal Resistance Junction-to-Case | R <sub>θJA</sub><br>R <sub>θJC</sub> | 180<br>45               | °C/W |
| DFN-8 (Note 5)          | Thermal Resistance Junction-to-Air<br>Thermal Resistance Junction-to-Case | $R_{	heta JA} \ R_{	heta JC}$        | 78<br>14                | °C/W |
| Storage temperature rar | ge                                                                        | T <sub>STG</sub>                     | -65 to +150             | °C   |
| Maximum junction tempe  | erature                                                                   | T <sub>J MAX</sub>                   | +150                    | °C   |
| Operation Junction Tem  | berature Range (Note 3) NCP3064<br>NCP3064B, NCV3064                      | Τ <sub>J</sub>                       | 0 to +70<br>-40 to +125 | °C   |

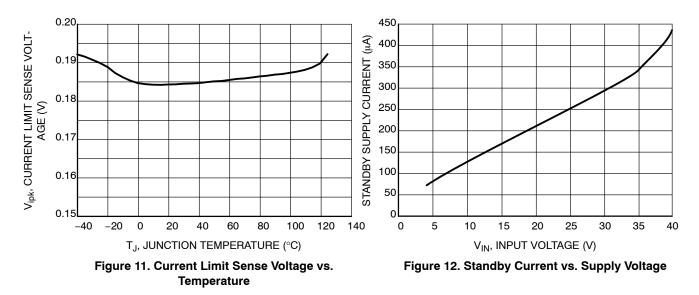
1. This device series contains ESD protection and exceeds the following tests: Pins 1 through 8:

Human Body Model 2000 V per AEC Q100-002; 003 or JESD22/A114; A115 Machine Model Method 200 V

2. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78.

3. The relation between junction temperature, ambient temperature and Total Power dissipated in IC is  $T_J = T_A + R_\Theta \cdot P_D$ .


4. The pins which are not defined may not be loaded by external signals.


5. 1 oz copper, 1 in<sup>2</sup> copper area.

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{CC} = 5.0 \text{ V}, -40^{\circ}\text{C} < T_{J} < +125^{\circ}\text{C} \text{ for NCP3064B and NCV3064}, 0^{\circ}\text{C} < ~T_{J} < +70^{\circ}\text{C} \text{ for NCP3064B}$ NCP3064 unless otherwise specified)

| Symbol                                    | Characteristic                                                                 | Conditions                                                                                                                                                                             | Min        | Тур  | Max        | Unit |
|-------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------------|------|
| OSCILLATOR                                | 3                                                                              |                                                                                                                                                                                        |            |      |            |      |
| f <sub>OSC</sub>                          | Frequency                                                                      | $(V_{Pin} 5 = 0 V, CT = 2.2 nF, T_{J} = 25^{\circ}C)$                                                                                                                                  | 110        | 150  | 190        | kHz  |
| I <sub>DISCHG</sub> /<br>I <sub>CHG</sub> | Discharge to Charge Current Ratio                                              | (Pin 7 to V <sub>CC</sub> , T <sub>J</sub> = 25°C)                                                                                                                                     | 5.5        | 6.0  | 6.5        | -    |
| Ι <sub>C</sub>                            | Capacitor Charging Current                                                     | (Pin 7 to V <sub>CC</sub> , T <sub>J</sub> = 25°C)                                                                                                                                     |            | 275  |            | μA   |
| IDISCH                                    | Capacitor Discharging Current                                                  | (Pin 7 to V <sub>CC</sub> , T <sub>J</sub> = 25°C)                                                                                                                                     |            | 1.65 |            | mA   |
| V <sub>IPK</sub>                          | Current Limit Sense Voltage                                                    | (T <sub>J</sub> = 25°C)                                                                                                                                                                | 165        | 200  | 235        | mV   |
| OUTPUT SW                                 | ITCH (Note 6)                                                                  |                                                                                                                                                                                        |            |      |            |      |
| V <sub>SWCE</sub>                         | Darlington Switch Collector to<br>Emitter Voltage Drop                         | (I <sub>SW</sub> = 1.0 A, T <sub>J</sub> = 25°C)<br>(Note 6)                                                                                                                           |            | 1.0  | 1.3        | V    |
| I <sub>C(OFF)</sub>                       | Collector Off-State Current                                                    | (V <sub>CE</sub> = 40 V)                                                                                                                                                               |            | 1.0  | 10         | μA   |
| COMPARATO                                 | DR                                                                             |                                                                                                                                                                                        |            |      |            |      |
| V <sub>TH</sub>                           | Threshold Voltage                                                              | $T_J = 25^{\circ}C$                                                                                                                                                                    |            | 1.25 |            | V    |
|                                           |                                                                                | NCP3064                                                                                                                                                                                | -1.5       |      | +1.5       | %    |
|                                           |                                                                                | NCP3064B, NCV3064                                                                                                                                                                      | -1.5       |      | +1.5       | %    |
| REG <sub>LINE</sub>                       | Threshold Voltage Line Regulation                                              | (V <sub>CC</sub> = 3.0 V to 40 V)                                                                                                                                                      | -6.0       | 2.0  | 6.0        | mV   |
| I <sub>CII in</sub>                       | Input Bias Current                                                             | $(V_{in} = V_{th})$                                                                                                                                                                    | -1000      | -100 | 1000       | nA   |
| ON/OFF FEA                                | TURE                                                                           |                                                                                                                                                                                        |            |      |            |      |
| V <sub>IH</sub>                           | ON/OFF Pin Logic Input Level High<br>V <sub>OUT</sub> = Nominal Output Voltage | $T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C$                                                                                                                 | 2.2<br>2.4 | -    |            | V    |
| V <sub>IL</sub>                           | ON/OFF Pin Logic Input Level Low<br>V <sub>OUT</sub> = 0 V                     | $T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C$                                                                                                                 | -          | -    | 1.0<br>0.8 | V    |
| Ι <sub>ΙΗ</sub>                           | ON/OFF Pin Input Current<br>ON/OFF Pin = 5 V (ON)                              | T <sub>J</sub> = 25°C                                                                                                                                                                  |            | 15   |            | μA   |
| Ι <sub>ΙL</sub>                           | ON/OFF Pin Input Current<br>ON/OFF Pin = 0 V (OFF)                             | $T_{\rm J}$ = 25°C                                                                                                                                                                     |            | 1.0  |            | μA   |
| OTAL DEVI                                 | CE                                                                             |                                                                                                                                                                                        |            |      |            |      |
| I <sub>CC</sub>                           | Supply Current                                                                 | $      (V_{CC} = 5.0 \text{ V to } 40 \text{ V}, \\ CT = 2.2 \text{ nF, Pin 7} = V_{CC}, \\ V_{Pin} 5 > V_{th}, \text{ Pin 2} = GND, \\ remaining pins open)      $                    |            |      | 7.0        | mA   |
| I <sub>STBY</sub>                         | Standby Quiescent Current                                                      | $\begin{array}{c} \text{ON/OFF Pin} = 0 \text{ V (OFF)} \\ \text{T}_{\text{J}} = 25^{\circ}\text{C} \\ \text{T}_{\text{J}} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} \end{array}$ |            | 85   | 100<br>100 | μΑ   |
| T <sub>SHD</sub>                          | Thermal Shutdown Threshold                                                     |                                                                                                                                                                                        |            | 160  |            | °C   |
| T <sub>SHDHYS</sub>                       | Hysteresis                                                                     |                                                                                                                                                                                        |            | 10   |            | °C   |

Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
The V<sub>IPK</sub> (Sense) Current Limit Sense Voltage is specified at static conditions. In dynamic operation the sensed current turn-off value depends on comparator response time and di/dt current slope. See the Operating Description section for details.

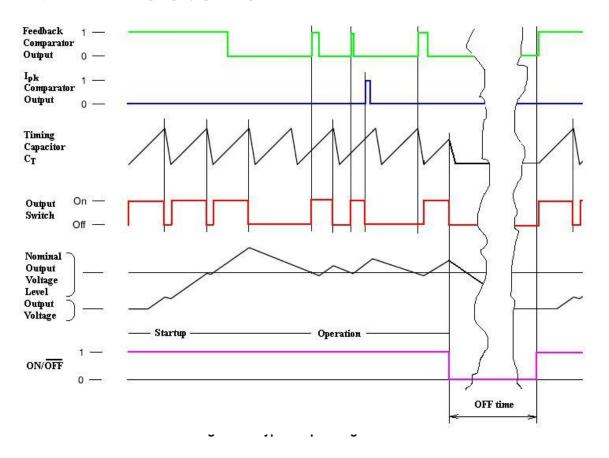




#### INTRODUCTION

The NCP3064 is a monolithic power switching regulator optimized for dc to dc converter applications. The combination of its features enables the system designer to directly implement step-up, step-down, and voltage-inverting converters with a minimum number of external components. Potential applications include cost sensitive consumer products as well as equipment for industrial markets. A representative block diagram is shown in Figure 4.

#### **Operating Description**


The NCP3064 is a hysteric, dc–dc converter that uses a gated oscillator to regulate output voltage. In general, this mode of operation is some what analogous to a capacitor charge pump and does not require dominant pole loop compensation for converter stability. The Typical Operating Waveforms are shown in Figure 13. The output voltage waveform shown is for a step–down converter with the ripple and phasing exaggerated for clarity. During initial converter startup, the feedback comparator senses that the output voltage level is below nominal. This causes the output switch to turn on and off at a frequency and duty cycle controlled by the oscillator, thus pumping up the output filter

capacitor. When the output voltage level reaches nominal, the output switch next cycle turning on is inhibited. The feedback comparator will enable the switching immediately when the load current causes the output voltage to fall below nominal. Under these conditions, output switch conduction can be enabled for a partial oscillator cycle, a partial cycle plus a complete cycle, multiple cycles, or a partial cycle plus multiple cycles.

#### Oscillator

The oscillator frequency and off-time of the output switch are programmed by the value selected for the timing capacitor C<sub>T</sub>. Capacitor C<sub>T</sub> is charged and discharged by a 1 to 6 ratio internal current source and sink, generating a positive going sawtooth waveform at Pin 3. This ratio sets the maximum  $t_{ON}/(t_{ON} + t_{OFF})$  of the switching converter as 6/(6 + 1) or 0.857 (typical).

The oscillator peak and valley voltage difference is 500 mV typically. To calculate the  $C_T$  capacitor value for the required oscillator frequency, use the equation found in Figure 15. An Excel® based design tool can be found at <u>www.onsemi.com</u> on the NCP3064 product page.



#### Peak Current Sense Comparator

With a voltage ripple gated converter operating under normal conditions, output switch conduction is initiated by the Voltage Feedback comparator and terminated by the oscillator. Abnormal operating conditions occur when the converter output is overloaded or when feedback voltage sensing is lost. Under these conditions, the Ipk Current Sense comparator will protect the Darlington output Switch. The switch current is converted to a voltage by inserting a fractional  $\Omega$  resistor,  $R_{SC},$  in series with  $V_{CC}$  and the Darlington output switch. The voltage drop across R<sub>SC</sub> is monitored by the Current Sense comparator. If the voltage drop exceeds 200 mV with respect to V<sub>CC</sub>, the comparator will set the latch and terminate output switch conduction on cycle-by-cycle basis. This Comparator/Latch а configuration ensures that the Output Switch has only a single on-time during a given oscillator cycle.

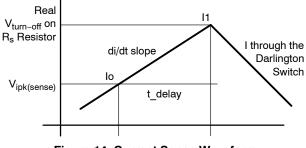



Figure 14. Current Sense Waveform

The  $V_{IPK(Sense)}$  Current Limit Sense Voltage threshold is specified at static conditions. In dynamic operation the sensed current turn-off value depends on comparator response time and di/dt current slope.

Real V<sub>turn-off</sub> on R<sub>sc</sub> resistor

 $V_{turn_off} = V_{ipk(sense)} + R_s^*(t_{delay}^*di/dt)$ 

Typical  $I_{pk}$  comparator response time  $t_{delay}$  is 350 ns. The di/dt current slope is growing with voltage difference on the

inductor pins and with decreasing inductor value. It is recommended to check the real max peak current in the application at worst conditions to be sure that the maximum peak current will never get over the 1.5 A Darlington Switch Current maximum rating.

#### Thermal Shutdown

Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at 160°C, the Output Switch is disabled. The temperature sensing circuit is designed with 10°C hysteresis. The Switch is enabled again when the chip temperature decreases to at least 150°C threshold. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a replacement for proper heat–sinking.

#### **Output Switch**

The output switch is designed in a Darlington configuration. This allows the application designer to operate at all conditions at high switching speed and low voltage drop. The Darlington Output Switch is designed to switch a maximum of 40 V collector to emitter voltage and current up to 1.5 A

#### **ON/OFF** Function

The ON/ $\overline{\text{OFF}}$  function disables switching and puts the part into a low power consumption mode. A PWM signal up to 1 kHz can be used to pulse the ON/ $\overline{\text{OFF}}$  and control the output. Pulling this pin below the threshold voltage (~1.4 V) or leaving it open turns the regulator off and has a standby current <100  $\mu$ A. Pulling this pin above 1.4 V (up to 25 V max) allows the regulator to run in normal operation. If the ON/ $\overline{\text{OFF}}$  feature is not needed, the ON/ $\overline{\text{OFF}}$  pin can be connected to the input voltage V<sub>CC</sub>, provided that this voltage does not exceed 25 V.

### APPLICATIONS

Figures 16, 20 and 24 show the simplicity and flexibility of the NCP3064. Two main converter topologies are demonstrated with actual test data shown below the circuit diagrams.

Figure 15 gives the relevant design equations for the key parameters. Additionally, a complete application design aid for the NCP3064 can be found at www.onsemi.com.

It is possible to create applications with external transistors. This solution helps to increase output current and helps with efficiency, still keeping the cost of materials low. Another advantage of using the external transistor is higher operating frequency, which can go up to 250 kHz. Smaller size of the output components such as inductor and capacitor can be used then.

| (See Notes 8, 9, 10)     | Step-Down                                                               | Step-Up                                                                 | Voltage-Inverting                                                                        |
|--------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ton<br>toff              | Vout + VF<br>Vin - VSWCE - Vout                                         | $\frac{V_{out} + V_F - V_{in}}{V_{in} - V_{SWCE}}$                      | $\frac{ V_{out}  + V_{F}}{V_{in} - V_{SWCE}}$                                            |
| t <sub>on</sub>          | $\frac{\frac{t_{on}}{t_{off}}}{f\left(\frac{t_{on}}{t_{off}}+1\right)}$ | $\frac{\frac{t_{on}}{t_{off}}}{f\left(\frac{t_{on}}{t_{off}}+1\right)}$ | $\frac{\frac{t_{on}}{t_{off}}}{f\left(\frac{t_{on}}{t_{off}}+1\right)}$                  |
| CT                       | רס                                                                      | $T = \frac{381.6 \cdot 10^{-6}}{f_{OSC}} - 343 \cdot 10^{-12}$          |                                                                                          |
| I <sub>L(avg)</sub>      | lout                                                                    | $I_{out}\left(\frac{t_{on}}{t_{off}}+1\right)$                          | $I_{out}\left(\frac{t_{on}}{t_{off}}+1\right)$                                           |
| I <sub>pk</sub> (Switch) | $I_{L(avg)} + \frac{\Delta I_{L}}{2}$                                   | $I_{L(avg)} + \frac{\Delta I_{L}}{2}$                                   | $I_{L(avg)} + \frac{\Delta I_{L}}{2}$                                                    |
| R <sub>SC</sub>          | 0.20<br><sup>I</sup> pk (Switch)                                        | 0.20<br><sup>I</sup> pk (Switch)                                        | 0.20<br><sup>I</sup> pk (Switch)                                                         |
| L                        | $\left(\!\frac{V_{in}-V_{SWCE}-V_{out}}{\DeltaI_L}\!\right)t_{on}$      | $\left(\frac{V_{in} - V_{SWCE}}{\Delta I_L}\right) t_{on}$              | $\left(\frac{V_{in}-V_{SWCE}}{\DeltaI_L}\right)t_{on}$                                   |
| V <sub>ripple(pp)</sub>  | $\Delta I_{L} \sqrt{\left(\frac{1}{8 f C_{O}}\right)^{2} + (ESR)^{2}}$  | $\approx \frac{\text{ton lout}}{C_{O}} + \Delta I_{L} \cdot \text{ESR}$ | $\approx \frac{t_{\text{on lout}}}{C_{\text{O}}} + \Delta I_{\text{L}} \cdot \text{ESR}$ |
| V <sub>out</sub>         | $V_{TH}\left(\frac{R_1}{R_2}+1\right)$                                  | $V_{TH}\left(\frac{R_1}{R_2}+1\right)$                                  | $VTH\left(\frac{R_1}{R_2} + 1\right)$                                                    |

8. V<sub>SWCE</sub> – Darlington Switch Collector to Emitter Voltage Drop, refer to Figures 7, 5, 8 and 9.

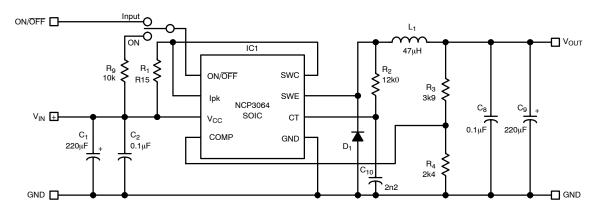
V<sub>F</sub> – Output rectifier forward voltage drop. Typical value for 1N5819 Schottky barrier rectifier is 0.4 V.

10. The calculated ton/toff must not exceed the minimum guaranteed oscillator charge to discharge ratio.

#### Figure 15. Design Equations

#### The Following Converter Characteristics Must Be Chosen:

Vin - Nominal operating input voltage.


Vout - Desired output voltage.

Iout – Desired output current.

 $\Delta I_L$  – Desired peak–to–peak inductor ripple current. For maximum output current it is suggested that  $\Delta I_L$  be chosen to be less than 10% of the average inductor current  $I_{L(avg)}$ . This will help prevent  $I_{pk}(Switch)$  from reaching the current limit threshold set by R<sub>SC</sub>. If the design goal is to use a minimum inductance value, let  $\Delta I_L = 2(I_{L(avg)})$ . This will proportionally reduce converter output current capability.

f – Maximum output switch frequency.

 $V_{ripple(pp)}$  – Desired peak-to-peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor C<sub>O</sub> should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.





#### Table 1. TESTED PARAMETERS

| Parameter | Input Voltage<br>(V) | Output Voltage<br>(V) | Input Current<br>(A) | Output Current<br>(A) |
|-----------|----------------------|-----------------------|----------------------|-----------------------|
| Value     | 10 – 16              | 3.3                   | Max. 0.6 A           | Max. 1.25             |

#### Table 2. BILL OF MATERIAL

| Designator | Qty | Description            | Value     | Tolerance | Footprint | Manufacturer     | Manufacturer<br>Part Number |
|------------|-----|------------------------|-----------|-----------|-----------|------------------|-----------------------------|
| R1         | 1   | Resistor               | 0.15Ω     | 1%        | 1206      | Susumu           | RL1632R-R150-F              |
| R2         | 1   | Resistor               | 12k       | 1%        | 1206      | ROHM             | MCR18EZHF1202               |
| R3         | 1   | Resistor               | 3k9       | 1%        | 1206      | ROHM             | MCR18EZHF3901               |
| R4         | 1   | Resistor               | 2k4       | 1%        | 1206      | ROHM             | MCR18EZHF4701               |
| R9         | 1   | Resisitor              | 10k       | 1%        | 1206      | ROHM             | MCR18EZHF1002               |
| C1         | 1   | Capacitor              | 220μF/35V | 20%       | F         | PANASONIC        | EEEFP1V221AP                |
| C2, C8     | 2   | Capacitor              | 100nF     | 10%       | 1206      | Kemet            | C1206C104K5RACTU            |
| C9         | 1   | Capacitor              | 220μF/6V  | 20%       | F8        | SANYO            | 6SVP220M                    |
| C10        | 1   | Capacitor              | 2.2nF     | 10%       | 1206      | Kemet            | C1206C222K5RACTU            |
| L1         | 1   | Inductor               | 47μΗ      | 20%       | DO3316    | CoilCraft        | DO3316P-473MLB              |
| D1         | 1   | Diode                  | MBRS230   | -         | SMB       | ON Semiconductor | MBRS230LT3G                 |
| IC         | 1   | Switching<br>Regulator | NCP3064   | -         | SOIC8     | ON Semiconductor | NCP3064DR2G                 |

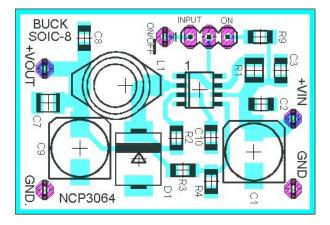
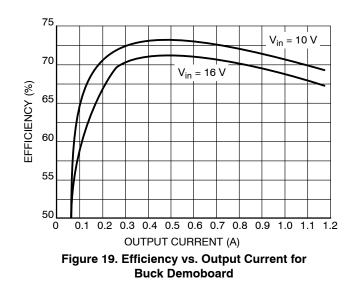




Figure 17. Buck Demoboard Layout

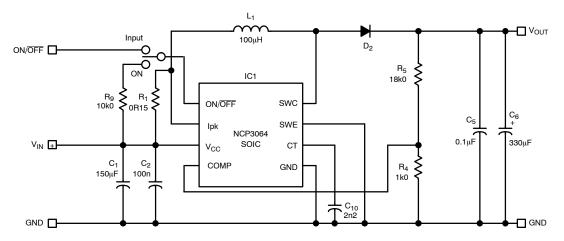



Figure 18. Buck Demoboard Photo



#### Table 3. TEST RESULTS

| Line Regulation | $V_{in}$ = 9 V to 12 V, $V_{out}$ = 3.3 V, $I_{out}$ = 800 mA               | 8 mV                |
|-----------------|-----------------------------------------------------------------------------|---------------------|
| Load Regulation | V <sub>in</sub> = 12 V, V <sub>out</sub> = 3.3 V, I <sub>out</sub> = 800 mA | 10 mV               |
| Output Ripple   | $V_{in}$ = 12 V, $V_{out}$ = 3.3 V, $I_{out}$ = 100 mA to 800 mA            | < 85 mV Peak - Peak |
| Efficiency      | V <sub>in</sub> = 12 V, V <sub>out</sub> = 3.3 V, I <sub>out</sub> = 500 mA | 70%                 |



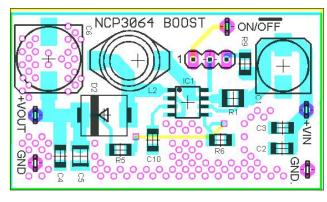


#### Table 4. TESTED PARAMETERS

| Parameter | Input Voltage | Output Voltage | Input Current | Output Current |
|-----------|---------------|----------------|---------------|----------------|
|           | (V)           | (V)            | (A)           | (A)            |
| Value     | 10 – 16       | 24             | Max. 1.25     | Max. 0.6       |

#### Table 5. BILL OF MATERIAL

| Designator | Qty | Description            | Value     | Tolerance | Footprint | Manufacturer     | Manufacturer Part<br>Number |
|------------|-----|------------------------|-----------|-----------|-----------|------------------|-----------------------------|
| R1         | 1   | Resistor               | 0.15Ω     | 1%        | 1206      | Susumu           | RL1632R-R150-F              |
| R5         | 1   | Resistor               | 18k       | 1%        | 1206      | ROHM             | MCR18EZHF1802               |
| R6         | 1   | Resistor               | 1k        | 1%        | 1206      | ROHM             | MCR18EZHF1001               |
| R9         | 1   | Resisitor              | 10k       | 1%        | 1206      | ROHM             | MCR18EZHF1002               |
| C1         | 1   | Capacitor              | 150μF/16V | 20%       | F8        | SANYO            | 6SVP150M                    |
| C2, C5     | 2   | Capacitor              | 100nF     | 10%       | 1206      | Kemet            | C1206C104K5RACTU            |
| C6         | 1   | Capacitor              | 330μF/25V | 20%       | SMD       | Panasonic        | EEE-FK1E331GP               |
| C10        | 1   | Capacitor              | 2.2nF     | 10%       | 1206      | Kemet            | C1206C222K5RACTU            |
| L2         | 1   | Inductor               | 100μH     | 20%       | DO3316    | CoilCraft        | DO3316P-104MLB              |
| D2         | 1   | Diode                  | MBRS230   | -         | SMB       | ON Semiconductor | MBRS230LT3G                 |
| IC         | 1   | Switching<br>Regulator | NCP3064   | -         | SOIC8     | ON Semiconductor | NCP3064DR2G                 |



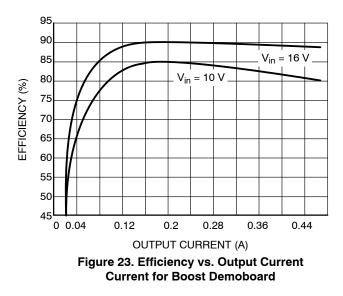


Figure 21. Boost Demoboard Layout



Figure 22. Boost Demoboard Photo

#### Table 6. TEST RESULTS

| Line Regulation | $V_{in}$ = 9 V to 15 V, $V_{out}$ = 24 V, $I_{out}$ = 250 mA                             | 3 mV                 |
|-----------------|------------------------------------------------------------------------------------------|----------------------|
| Load Regulation | $V_{in}$ = 12 V, $V_{out}$ = 24 V, $I_{out}$ = 50 to 350 mA                              | 5 mV                 |
| Output Ripple   | $V_{in} = 12 \text{ V}, V_{out} = 24 \text{ V}, I_{out} = 50 \text{ to } 350 \text{ mA}$ | < 350 mV Peak - Peak |
| Efficiency      | V <sub>in</sub> = 12 V, V <sub>out</sub> = 24 V, I <sub>out</sub> = 200 mA               | 86%                  |



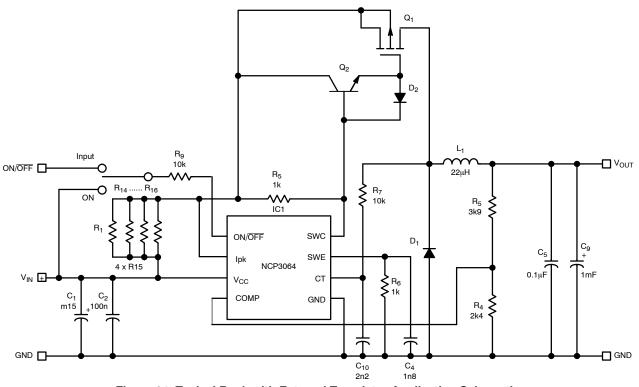



Figure 24. Typical Buck with External Transistor Application Schematic

#### Table 7. TESTED PARAMETERS

| Parameter | Input Voltage | Output Voltage | Input Current | Output Current |
|-----------|---------------|----------------|---------------|----------------|
|           | (V)           | (V)            | (A)           | (A)            |
| Value     | 10 – 16       | 3.3            | Max. 1.25     | Max. 3         |

| Table 8. BILL OF MATERIAL |  |
|---------------------------|--|
|---------------------------|--|

| Designator           | Qty | Description            | Value    | Tolerance | Footprint | Manufacturer     | Manufacturer<br>Part Number |
|----------------------|-----|------------------------|----------|-----------|-----------|------------------|-----------------------------|
| R1, R14,<br>R15, R16 | 4   | Resistor               | 0.15R    | 1%        | 1206      | Susumu           | RL1632R-R150-F              |
| R5, R6               | 2   | Resistor               | 1k       | 1%        | 1206      | ROHM             | MCR18EZHF1001               |
| R3                   | 1   | Resistor               | 3k9      | 1%        | 1206      | ROHM             | MCR18EZHF3901               |
| R4                   | 1   | Resistor               | 2k4      | 1%        | 1206      | ROHM             | MCR18EZHF2401               |
| R7;R9                | 2   | Resistor               | 10k      | 1%        | 1206      | ROHM             | MCR18EZHF1002               |
| C1                   | 1   | Capacitor              | 270µF    | 20%       | 10 x 16   | PANASONIC        | EEUFC1V271                  |
| C4                   | 1   | Capacitor              | 1n8      | 10%       | 1206      | Kemet            | C1206C182K5RACTU            |
| C2, C8               | 2   | Capacitor              | 100nF    | 10%       | 1206      | Kemet            | C1206C104K5RACTU            |
| C9                   | 1   | Capacitor              | 1mF      | 20%       | F8        | SANYO            | 4SA1000M                    |
| C10                  | 1   | Capacitor              | 2.2nF    | 10%       | 1206      | Kemet            | C1206C222K5RACTU            |
| Q1                   | 1   | Transistor             | MMSF7P03 | -         | SOIC8     | ON Semiconductor | MMSF7P03HDR2G               |
| Q2                   | 1   | Transistor NPN         | MMBT489L | -         | SOT-23    | ON Semiconductor | MMBT489LT1G                 |
| D2                   | 1   | Diode                  | MBR130T  | -         | SOD-123   | ON Semiconductor | MBR130T1G                   |
| IC1                  | 1   | Switching<br>Regulator | NCP3064  | -         | SOIC8     | ON Semiconductor | NCP3064DR2G                 |
| D1                   | 1   | Diode                  | MBRS330T | -         | SMC       | ON Semiconductor | MBRS330T3G                  |
| L1                   | 1   | Inductor               | 22µH     | 20%       | Coilcraft | Coilcraft        | DO5040H-223MLB              |

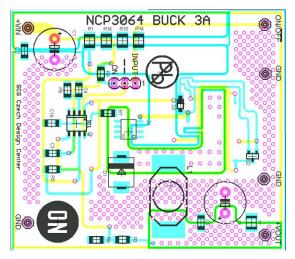



Figure 25. Buck Demoboard with External PMOS Transistor Layout

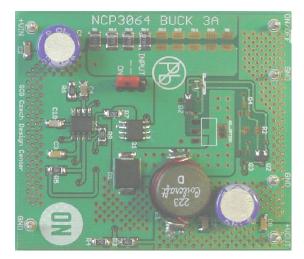



Figure 26. Buck Demoboard with External PMOS Transistor Photo

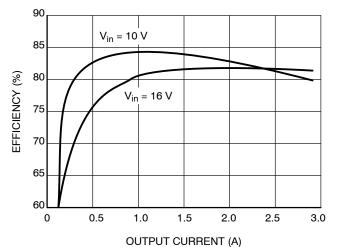



Figure 27. Efficiency vs. Output Current Current for Buck Demoboard with External PMOS Transistor

### Table 9. TEST RESULTS

| Line Regulation | $V_{in}$ = 9 V to 15 V, $V_{out}$ = 3.3 V, $I_{out}$ = 2 A   | 8 mV                 |
|-----------------|--------------------------------------------------------------|----------------------|
| Load Regulation | $V_{in}$ = 12 V, $V_{out}$ = 3.3 V, $I_{out}$ = 0.5 to 3.0 A | 10 mV                |
| Output Ripple   | $V_{in}$ = 12 V, $V_{out}$ = 3.3 V, $I_{out}$ = 0.5 to 3.0 A | < 300 mV Peak - Peak |
| Efficiency      | $V_{in}$ = 12 V, $V_{out}$ = 3.3 V, $I_{out}$ = 2 A          | 82%                  |

The picture in Figure 24. Typical Buck Application Schematic shows typical configuration with external PMOS transistor. Resistor R7 connected between timing capacitor TC Pin and SWE Pin provides a pulse feedback voltage. The pulse feedback approach increases the operating ffrequency by up to 50%. Figure 28, Oscillator Frequency vs. Timing Capacitor with Pulse Feedback, shows the impact to the oscillator frequency at buck converter for V<sub>in</sub> = 12 V and V<sub>out</sub> = 3.3 V with pulse feedback resistor  $R_7 = 10 \text{ k}\Omega$ . It also creates more regular switching waveforms with constant operating frequency which results in lower ripple voltage and improved efficiency. If the application allows ON/ $\overline{OFF}$  pin to be biased by voltage and the power supply is not connected to Vcc pin at the same time, then it is recommended to limit ON/ $\overline{OFF}$  current by resistor with value 10 k $\Omega$  to protect the NCP3064 device. This situation is mentioned in Figure 29, ON/ $\overline{OFF}$  Serial Resistor Connection.

This resistor shifts the ON/OFF threshold by about 200 mV to higher value, but the TTL logic compatibility is kept in full range of input voltage and operating temperature range.

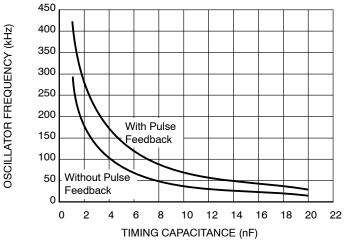
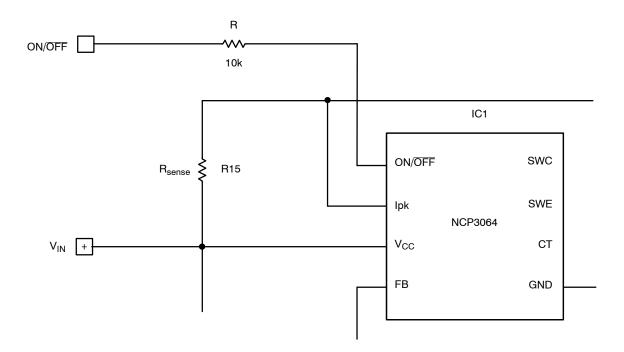
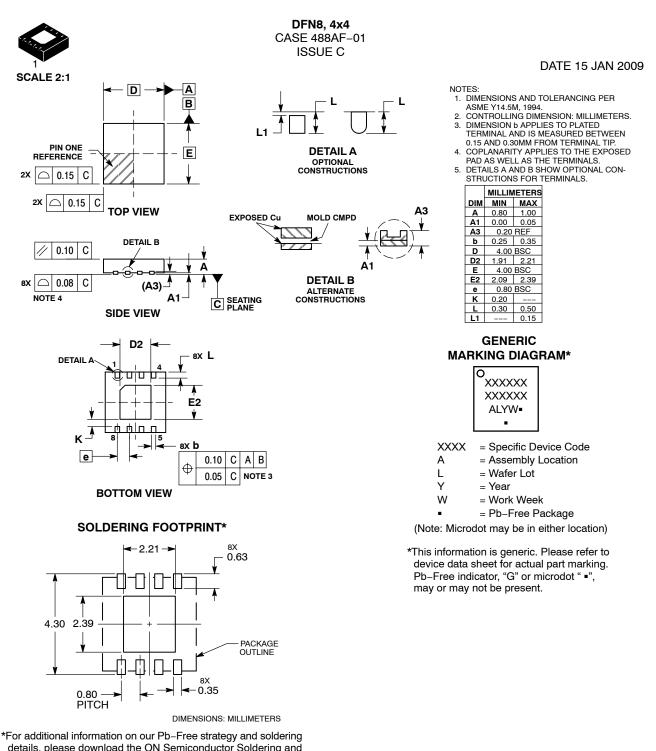




Figure 28. Oscillator Frequency vs. Timing Capacitor with Pulse Feedback





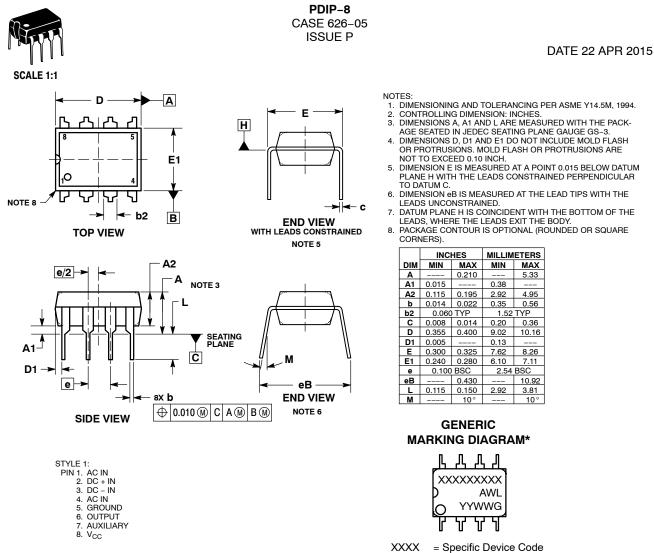

#### **ORDERING INFORMATION**

| Device        | Package             | Shipping <sup>†</sup>    |
|---------------|---------------------|--------------------------|
| NCP3064MNTXG  | DFN-8<br>(Pb-Free)  | 4000 Units / Tape & Reel |
| NCP3064BMNTXG | DFN-8<br>(Pb-Free)  | 4000 Units / Tape & Reel |
| NCP3064PG     | PDIP-8<br>(Pb-Free) | 50 Units / Rail          |
| NCP3064BPG    | PDIP-8<br>(Pb-Free) | 50 Units / Rail          |
| NCP3064DR2G   | SOIC-8<br>(Pb-Free) | 2500 Units / Tape & Reel |
| NCP3064BDR2G  | SOIC-8<br>(Pb-Free) | 2500 Units / Tape & Reel |
| NCV3064MNTXG  | DFN-8<br>(Pb-Free)  | 4000 Units / Tape & Reel |
| NCV3064PG     | PDIP-8<br>(Pb-Free) | 50 Units / Rail          |
| NCV3064DR2G   | SOIC-8<br>(Pb-Free) | 2500 Units / Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Excel is a registered trademark of Microsoft Corporation.

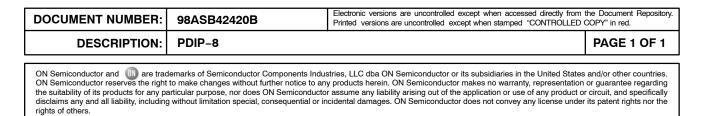




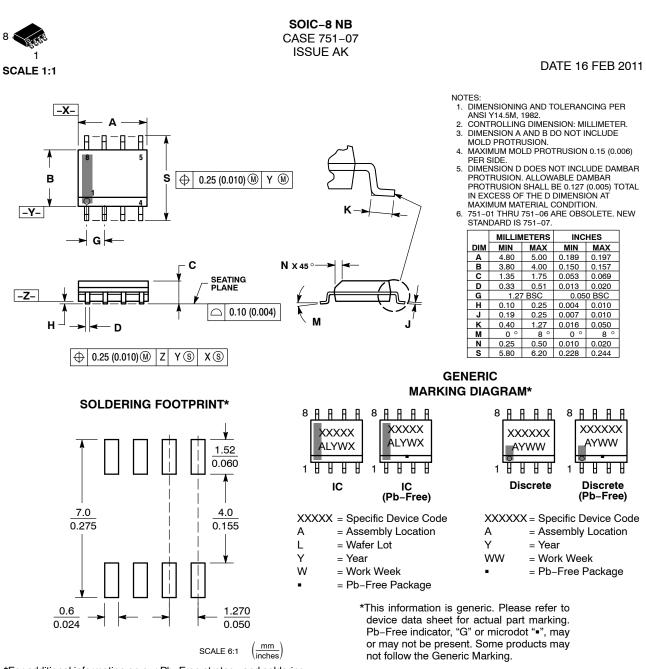

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98AON15232D Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DFN8, 4X4, 0.8P                                                                                                                                                                                 |  | PAGE 1 OF 1 |  |  |
| ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the output further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the output for the products herein. |                                                                                                                                                                                                 |  |             |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.







A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.







\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### STYLES ON PAGE 2

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98ASB42564B | 2564B Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIC-8 NB   |                                                                                                                                                                                           | PAGE 1 OF 2 |  |  |  |
| ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others. |             |                                                                                                                                                                                           |             |  |  |  |

#### SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

#### DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW\_TO\_GND 2. DASIC OFF DASIC\_SW\_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOIC-8 NB   |                                                                                                                                                                                     | PAGE 2 OF 2 |  |  |  |
| ON Semiconductor and () are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding<br>the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically<br>disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the |             |                                                                                                                                                                                     |             |  |  |  |

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP1871-0.6-1.875EVALZ ADP1202-1.8-EVALZ ADP2102-2-EVALZ ADP1202-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKITIZ LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV