NCP339

3 A Ultra-Small Controlled Load Switch with Auto-Discharge Path and Reverse Current Control

The NCP339 is a very low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC on the battery when not used.

Reverse blocking control is automatically engage if OUT pin voltage is higher than IN pin voltage, eliminate leakages current from OUT to IN.

Proposed in a wide input voltage range from 1.2 V to 5.5 V , in a small $1 \times 1.5 \mathrm{~mm}$ WLCSP6, pitch 0.5 mm .

Features

- 1.2 V - 5.5 V Operating Range
- $19 \mathrm{~m} \Omega$ P MOSFET at 4.5 V
- DC Current up to 3 A
- Soft Start Control
- Low Quiescent Current
- Reverse Blocking
- Active High EN pin
- WLCSP6 $1 \times 1.5 \mathrm{~mm}$
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices
- Computers

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Typical Application Circuit

Table 1. PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Type	Description
IN	A2, B2	POWER	Load-switch input voltage; connect a 1 μ F or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	C1	POWER	Ground connection.
EN	C2	INPUT	Enable input, logic high turns on power switch.
OUT	A1, B1	OUTPUT	Load-switch output; connect a 100 nF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.

Figure 2. Block Diagram

NCP339

Table 2. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, Pins: (Note 1)	$\mathrm{V}_{\mathrm{EN},} \mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}$	-0.3 to +7.0	V
From IN to OUT Pins: Input/Output (Note 1)	$\mathrm{V}_{\mathrm{IN},}, \mathrm{V}_{\mathrm{OUT}}$	-7.0 to +7.0	V
Human Body Model (HBM) ESD Rating are (Note 1 and 2)	ESD HBM	4000	V
Machine Model (MM) ESD Rating are (Note 1 and 2)	ESD MM	250	V
Latch-up protection (Note 3) - Pins IN, OUT, EN	LU	100	mA
Maximum Junction Temperature	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Moisture Sensitivity (Note 4)	MSL	Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. OPERATING CONDITIONS

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$V_{\text {IN }}$	Operational Power Supply			1.2		5.5	V
$\mathrm{V}_{\text {EN }}$	Enable Voltage			0		5.5	
T_{A}	Ambient Temperature Range			-40	25	+85	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Range			-40	25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Decoupling input capacitor			1			$\mu \mathrm{F}$
$\mathrm{C}_{\text {OUT }}$	Decoupling output capacitor			100			nF
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Air	WLCSP package (Note 3)			100		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Iout	Maximum DC current					3	A
P_{D}	Power Dissipation Rating (Note 4)	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	WLCSP package		1		W
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	WLCSP package		0.4		W

1. According to JEDEC standard JESD22-A108.
2. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.
3. The $R_{\theta J A}$ is dependent of the PCB heat dissipation and thermal via.
4. The maximum power dissipation (PD) is given by the following formula:

$$
P_{D}=\frac{T_{J M A X}-T_{A}}{R_{\theta J A}}
$$

Table 4. ELECTRICAL CHARACTERISTICS
Min \& Max Limits apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for $\mathrm{V}_{\text {IN }}$ between 1.2 V to 5.5 V (Unless otherwise noted).
Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ (Unless otherwise noted).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit

POWER SWITCH

$\mathrm{R}_{\text {DSON }}$	Static drain-source on-state resistance	$\mathrm{Vin}=5.5 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		18		$\mathrm{m} \Omega$
		$\mathrm{Vin}=5.5 \mathrm{~V}$	$\mathrm{Tj}=125^{\circ} \mathrm{C}$			30	
		$\mathrm{Vin}=4.5 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		19		
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			30	
		Vin $=3.3 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		22		
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			30	
		Vin $=2.5 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		27		
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			40	
		Vin $=1.8 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		37		
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			60	
		Vin $=1.5 \mathrm{~V}$	lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		48		
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			110	
Rdis	Output discharge path	EN = low	Discharge path option		70	90	Ω
V_{IH}	High-level input voltage			1.2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	
R_{pd}	EN pull down resistor			5.5	7.1	9.5	$\mathrm{M} \Omega$

REVERSE CURRENT BLOCKING

$V_{\text {rev_thr }}$	Reverse threshold	Vout-Vin		40	mV
$\mathrm{V}_{\text {rev_hyst }}$	Reverse threshold hys- teresis			60	mV
$\mathrm{T}_{\text {rev }}$	Reverse comparator re- sponse time	Vout-Vin $>\mathrm{V}_{\text {rev_thr }}$		2.5	

QUIESCENT CURRENT

Istd	Standby current	Vin = 4.2 V	EN = low, No load, GND current		0.35	0.6	$\mu \mathrm{~A}$
lin_leak	Mos leakage current	Vin $=4.2 \mathrm{~V}$	EN = low, Vout = GND, Vout current		9	200	nA
Iq	Quiescent current	Vin = 4.2 V	EN = high, No load, GND current		1.0	1.5	$\mu \mathrm{~A}$
I $_{\text {out_leak }}$	Output leakage current	Vout = 4.2 V	Vin = GND		16	200	nA

TIMINGS

$\mathrm{T}_{\text {EN }}$	Enable time	$\begin{aligned} & \text { Vin }=4.2 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=5 \Omega$, Cout $=100 \mu \mathrm{~F}$		1.7		ms
TR	Output rise time				2.7		
Ton	ON time ($\mathrm{TEN}^{+} \mathrm{T}_{\mathrm{R}}$)				4.4		
T_{F}	Output fall time				1.5		
$\mathrm{T}_{\text {EN }}$	Enable time	$\begin{aligned} & \mathrm{Vin}=4.2 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=25 \Omega$, Cout $=1 \mu \mathrm{~F}$	0.5	1.0	2.5	ms
T_{R}	Output rise time			0.4	1.5	2.3	
$\mathrm{T}_{\text {ON }}$	ON time ($\mathrm{T}_{\mathrm{EN}}+\mathrm{T}_{\mathrm{R}}$)			0.9	2.5	4.8	
T_{F}	Output fall time				0.06	0.1	

5. Guaranteed by design and characterization.
6. Parameters are guaranteed for C COAD and R ROAD connected to the OUT pin with respect to the ground.

NCP339

Table 4. ELECTRICAL CHARACTERISTICS
Min \& Max Limits apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for $\mathrm{V}_{\text {IN }}$ between 1.2 V to 5.5 V (Unless otherwise noted).
Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ (Unless otherwise noted).

Symbol	Parameter		Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {EN }}$	Enable time	$\begin{aligned} & \text { Vin = 4.2 V } \\ & (\text { Note 6) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$, Cout $=100 \mu \mathrm{~F}$		1.7		ms
T_{R}	Output rise time				1.5		
Ton	ON time ($\mathrm{T}_{\mathrm{EN}}+\mathrm{T}_{\mathrm{R}}$)				3.2		
$\mathrm{T}_{\text {DIS }}$	Disable time				1.8		
T_{F}	Fall time				4		
TofF	Output fall time $\left(T_{F}+T_{D I S}\right)$				42		

5. Guaranteed by design and characterization.
6. Parameters are guaranteed for C LOAD and $R_{\text {LOAD }}$ connected to the OUT pin with respect to the ground.

Figure 3. Timings

TYPICAL CHARACTERISTICS

Figure 4. Standby Current ($\mu \mathrm{A}$) versus Vin (V)

Figure 5. Quiescent Current ($\mu \mathrm{A}$) versus Vin (V)

NCP339

Figure 6. Reverse Current (nA) versus Vin (V)

Figure 7. R $_{\text {DSON }}(\mathrm{m} \Omega)$ versus Temperature (lload $\left.=100 \mathrm{~mA}\right)$

Figure 8. $\mathrm{R}_{\mathrm{DSON}}(\mathrm{m} \Omega)$ versus Vin (V)

FUNCTIONAL DESCRIPTION

Overview

The NCP339 is a high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a wide range of battery from 1.2 V to 5.5 V . Reverse blocking from output to input control is embedded in the IC to eliminate leakage current if Vout voltage exceed front end power supply.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.2 V and EN forced to high level.

Blocking Control

The reverse blocking feature allows to avoid reverse current, through the PMOS fet if a voltage is applied on Vout pin, and $\mathrm{V}_{\text {rev_thr }}$ above the Vin pin. This function is available, whatever the EN logic pin state (High or low). To retrieve normal state, Vin-Vout must be higher to hysteresis of the reverse blocking comparator ($\mathrm{V}_{\text {rev_hyst }}$. The reverse blocking comparator response time is set to $\mathrm{T}_{\mathrm{rev}}$.

Table 5. CONTROL LOGIC

$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {OUT }}$	EN
Present	Mos OFF	Low
Present	Mos ON	High
Mos OFF	$\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {IN }}$	x

Auto Discharge (Optional)

NMOS FET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin.

The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and Vin $>1.2 \mathrm{~V}$.

In order to limit the current across the internal discharge Nmosfet, the typical value is set at 70Ω.

Cin and Cout Capacitors

Cin $1 \mu \mathrm{~F}$ and Cout 100 nF , at least, capacitors must be placed as close as possible the part to for stability improvement.
For inrush effects at start up, it's recommended to respect Cin $>$ Cout size.

APPLICATION INFORMATION

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

```
- \(\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{DS}(\mathrm{on})} \times\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2}\)
    \(\mathrm{P}_{\mathrm{D}} \quad=\) Power dissipation (W)
    \(\mathrm{R}_{\mathrm{DS}(\text { on })} \quad=\) Power MOSFET on resistance \((\Omega)\)
    IOUT \(\quad=\) Output current \((\mathrm{A})\)
- \(\mathrm{T}_{\mathrm{J}}=\mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}}+\mathrm{T}_{\mathrm{A}}\)
    \(\mathrm{T}_{\mathrm{J}} \quad=\) Junction temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(\mathrm{R}_{\theta \mathrm{JA}} \quad=\) Package thermal resistance \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
    \(\mathrm{T}_{\mathrm{A}} \quad=\) Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
```


PCB Recommendations

The NCP339 integrates an up to 3 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $\mathrm{R}_{\theta \mathrm{JA}}$ of the package can be decreased, allowing higher power dissipation.

Routing example: 2 oz , 4 layers with vias across 2 internal inners.

Figure 9.

Example of application definition.
$\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}=\mathrm{R}_{\theta \mathrm{JA}} \times \mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\theta \mathrm{JA}} \times \mathrm{R}_{\mathrm{DSON}} \times \mathrm{I}^{2}$
T_{J} : junction temperature.
T_{A} : ambient temperature.
$\mathrm{R}_{\theta}=$ Thermal resistance between IC and air, through PCB.
$\mathrm{R}_{\mathrm{DSON}}$: intrinsic resistance of the IC Mosfet.
I: load DC current.
Taking into account of R_{θ} obtain with:

- $1 \mathrm{oz}, 2$ layers: $100^{\circ} \mathrm{C} / \mathrm{W}$.

At $3 \mathrm{~A}, 25^{\circ} \mathrm{C}$ ambient temperature, $\mathrm{R}_{\mathrm{DSON}} 20 \mathrm{~m} \Omega @$
Vin 5 V , the junction temperature will be:
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{R}_{\theta} \times \mathrm{P}_{\mathrm{D}}=25+\left(0.02 \times 3^{2}\right) \times 100=43^{\circ} \mathrm{C}$
Taking into account of R_{θ} obtain with:

- $2 \mathrm{oz}, 4$ layers: $60^{\circ} \mathrm{C} / \mathrm{W}$.

At $3 \mathrm{~A}, 65^{\circ} \mathrm{C}$ ambient temperature, $\mathrm{R}_{\text {DSON }} 24 \mathrm{~m} \Omega$ @
Vin 5 V , the junction temperature will be:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{R}_{\theta} \times \mathrm{P}_{\mathrm{D}}=65+\left(0.024 \times 3^{2}\right) \times 60=78^{\circ} \mathrm{C}
$$

ORDERING INFORMATION

Device	Marking	Option	Package	Shipping †
NCP339AFCT2G	NP	Without Auto-discharge	WLCSP6, $1 \times 1.5 \mathrm{~mm}$ $($ Pb-Free $)$	$3000 /$ Tape \& Reel
NCP339BFCT2G	DP	With Auto-discharge	WLCSP6, $1 \times 1.5 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel

[^0]

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. COPLANARITY APPLIES TO SPHERICAL

CROWNS OF SOLDER BALLS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.54	0.63
A1	0.22	0.28
A2	0.33 REF	
b	0.29	0.34
D	1.00 BSC	
E	1.50	
BSC		
e	$0.50 ~ B S C$	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON79918E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP6, 1.00X1.50 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

