ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
USB Type-C VCONN Overvoltage Protection IC

The NCP398 is an overvoltage protection device. It protects VCONN against overvoltages in applications where VCONN is directly derived from the VBUS supply.

At power up, the integrated power MOSFET is automatically controlled to reduce inrush current. The IC continuously monitors undervoltage, overvoltage and thermal events. In case of overvoltage, a very high speed comparator opens the power MOSFET instantaneously.

The part is enabled through the $\overline{\mathrm{EN}}$ pin. A high level on this pin allows forcing off the internal switch and drastically decreases the current consumption of the NCP398 core.

Features

- Over-voltage Protection up to +28 V
- On-chip Low $\mathrm{R}_{\text {dson }}$ NMOS Transistors: Typical $200 \mathrm{~m} \Omega$
- Over-voltage Lockout (OVLO)
- Shutdown EN Input
- Output Discharge Path
- WLCSP4 Package $0.84 \times 0.84 \mathrm{~mm}, 0.4 \mathrm{p}$
- UDFN6 Package $2 \times 2 \mathrm{~mm}, 0.65 \mathrm{p}$
- These Parts are ROHS Devices

Typical Applications

- Type-C USB
- Smartphones
- Tablets

Figure 1. Typical Application Circuit

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

AV = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

AA = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

NCP398

Figure 2. Simplified Block Diagram, WLCSP and UDFN Packages
Table 1. CSP PINOUT DESCRIPTION

Pin	Pin Name	Type	Description
A1	OUT	OUTPUT	Output voltage pin. The OUT pin must be connected to the circuitry that is to be protected (VCONN rail).
B1	EN	I/O	Enable pin bar. The device enters in shutdown mode when this pin is tied high in which case the output is disconnected from the input.
A2	IN	POWER	Input voltage pin. The IN pin must be connected to the input power supply (VBUS).
B2	GND	POWER	Ground. Must be connected to the system GND plane.

Table 2. DFN PINOUT DESCRIPTION

Pin	Pin Name	Type	Description
1,2	IN	POWER	Input voltage pins. The two IN pins must be hardwired together and are connected to the input power supply (VBUS).
3	GND	POWER	Ground. Must be connected to the system GND plane.
5,6	OUT	POWER	Output voltage pins. The two OUT pins must be hardwired together and are connected to the circuitry that is to be protected (VCONN rail).
4	EN	I/O	Enable pin bar. The device enters in shutdown mode when this pin is tied high in which case the output is disconnected from the input.
7	PAD	POWER	DFN package back side pad. Must be connected to ground plane for thermal dissipation optimization.

NCP398

Table 3. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Minimum Voltage (All to GND)	$\mathrm{V}_{\text {MIN }}$	-0.3	V
Maximum Voltage (Ins to GND)	$\mathrm{V}_{\text {INMAX }}$	29	V
Maximum Voltage (All others to GND)	$\mathrm{V}_{\text {MAX }}$	7	V
Maximum DC current	$\mathrm{I}_{\text {max }}$	0.8	A
$\begin{array}{lr}\text { Thermal Resistance, Junction to Air } & \text { WLCSP (Note 1) } \\ \text { DFN (Note 1) }\end{array}$	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & \hline 170 \\ & 145 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Operating temperature	T_{J}	+125	${ }^{\circ} \mathrm{C}$
Human Body Model (HBM) ESD Rating are (Note 2)	ESD HBM	2	kV
Charged Device Model (CDM) ESD Rating are (Note 2)	ESD CDM	1	kV
Latch Up Current (Note 3)	ILU	100	mA
Moisture Sensitivity	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The $R_{\theta J \mathrm{JA}}$ is highly dependent on the PCB heat sink area. As example UDFN6 $R_{\theta J \mathrm{~A}}$ is $220^{\circ} \mathrm{C} / \mathrm{W}$ with $50 \mathrm{~mm}^{2}$ (copper $35 \mu \mathrm{~m}, 1 \mathrm{oz}$) and $145^{\circ} \mathrm{C} / \mathrm{W}$ with $200 \mathrm{~mm}^{2}$ (copper $35 \mu \mathrm{~m}, 2 \mathrm{oz}$).
2. Human Body Model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor following specification JESD22/A114, Charged Device Model (CDM) per JEDEC standard: JESD22-C101 Class IV.
3. Latch Up Current per JEDEC standard: JESD78 class II.

Table 4. ELECTRICAL CHARACTERISTICS
Min / Max limits values $\left(-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\right)$ and $\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$ (Unless otherwise noted). Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Characteristics	Symbols	Conditions	Min	Typ	Max	Unit
Input Voltage Range	$\mathrm{V}_{\text {IN }}$		-	-	28	V
Under Voltage Lockout	UVLO	Vin rising	2.4	-	2.8	V
Under Voltage Lockout Hysteresis	UVLOHYST	Vin falling	-	50	-	mV
Over voltage Lockout Threshold	OVLO (Note 4)	Vin rising	5.50	5.65	5.80	V
Over voltage Lockout Threshold hysteresis	OVLOHYST	Vin falling	-	115	-	mV
Vin versus Vout Resistance	$\mathrm{R}_{\text {DSON }}$	Vin $=5 \mathrm{~V}, \mathrm{EN}=$ low, $25^{\circ} \mathrm{C}$, WLCSP	-	190	220	$\mathrm{m} \Omega$
		$-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<85^{\circ} \mathrm{C}$, WLCSP	-	230	260	
		Vin $=5 \mathrm{~V}, \mathrm{EN}=$ low, $25^{\circ} \mathrm{C}$, UDFN	-	230	260	
		$-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<85^{\circ} \mathrm{C}$, UDFN	-	270	300	
Supply Quiescent Current	IDD	No load. EN = low	-	40	60	$\mu \mathrm{A}$
OFF current	IOFF	$\overline{\mathrm{EN}}=$ high	-	-	1.5	$\mu \mathrm{A}$
Standby current	Isti	Vin $=2.4 \mathrm{~V}$	-	-	2.5	$\mu \mathrm{A}$
Output Discharge path	RPD	From $\mathrm{EN}=$ low to high or Vin $<$ UVLO - hysteresis to Vout $=V_{\text {PD }}$	8	10	12	k Ω
Output Discharge path level	V_{PD}	Vout falling	-	0.63	-	V

EN

$\overline{\mathrm{EN}}$ Voltage High	V_{IH}		1.2	-	-	V
$\overline{\mathrm{EN}}$ Voltage Low	V_{IL}		-	-	0.4	V
$\overline{\mathrm{EN}}$ Input Leakage Current	I_{EN}	$0<\mathrm{V}_{\overline{\mathrm{EN}}}<5.5 \mathrm{~V}$	-1	0	+1	$\mu \mathrm{~A}$

TIMINGS

Ton Time	TON	Vin valid, From EN high to low, 90\% Vout	-	0.3	1	ms
Disable Time	ToFF	From EN low to high, to 90% Vout. RLOAD 100Ω	-	10	-	$\mu \mathrm{S}$
OVLO Turn Off Time	TovLo	Vin exceeding $\mathrm{V}_{\text {OVLO }}$ at $2 \mathrm{~V} / \mathrm{us}$ to Vout starts decreasing. RLOAD 100Ω	-	100	-	ns

Thermal shutdown	TSD		-	150	-	${ }^{\circ} \mathrm{C}$
Thermal shutdown rearming	TSD rearm		-	125	-	${ }^{\circ} \mathrm{C}$

4. Please contact your ON representative for additional OVLO thresholds.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Operation

The NCP398 device provides overvoltage protection when a wrong input supply is connected or voltage ringing appears on the input line. The internal NMOS Fet is soft start controlled to limit inrush current into the load (capacitors, IC wake up).

The device integrates an enable control pin, undervoltage and overvoltage comparators, and output discharge path to eliminate residual voltage after the turn off.

Timings Chronogram and States Description

The phase 1 sections described below are respectively the OFF state ($\overline{\mathrm{EN}}$ high) and the standby state (VIN <

UVLO) of the device. When Vin is below the undervoltage comparator (UVLO) or $\overline{\mathrm{EN}}$ is tied high, NCP398 will be in this state.

Phase 2 corresponds to the defined time for the gate driver soft start. Referring to the electrical parameter, this phase is aligned to Ton time.
Phase 3 is the normal operation, with Vin valid, the part enabled and there is no fault.

The behavior during an overvoltage condition is detailed in the phase number 4.

Figure 3. Timings Diagram

Enable Bar Pin (EN)

The part is enabled through the $\overline{\mathrm{EN}}$ pin. In some diagrams and figures, ENB refers to $\overline{\mathrm{EN}}$. A high level on this pin allows forcing off the internal switch and drastically decreases the current consumption of the NCP398 core. To exit the OFF state, the $\overline{\mathrm{EN}}$ pin must be tied low.

Under-voltage Lockout (UVLO)

To ensure proper operation under any conditions, the device integrates an under-voltage lock out (UVLO) comparator. This block has a built-in hysteresis to provide noise immunity to transient conditions.

Over-voltage Lockout (OVLO)

To protect connected systems on VOUT pin from over-voltage, a second comparator, over-voltage lock out (OVLO), is embedded. During over-voltage condition, the output remains disabled until the input voltage drops below the OVLO - comparator hysteresis.

Auto Discharge - R ${ }_{P D}$

When disabling the NCP398 the output gets automatically discharged by means of the internal pull down resistor Rpd. Once reaching the Vpd level the discharge path is disabled. The auto-discharge is also engaged when Vin drops below the UVLO threshold. The auto-discharge ensures a proper power cycling of peripherals connected to the output of the NCP398.

Thermal Shutdown Protection

In case of internal overheating, the integrated thermal shutdown (TSD) protection will open the internal NMOS FET in order to instantaneously decrease the device temperature.
Embedded hysteresis allows reengaging the NMOS FET when the junction temperature decreases.
This OFF-ON cycle is repeated until the fault event disappears.

NCP398
TYPICAL CHARACTERISTICS

Figure 4. Ron vs. Vin, Overtemperature

Figure 6. Standby Current vs. Vin, Over Temperature

Figure 8. Quiescent Current vs. Vin, Over Temperature

Figure 5. Ron vs. Temperature, at Fixed Vin Voltage

Figure 7. Standby Current vs. Vin, Over Temperature

Figure 9. Quiescent Current vs. Vin, Over Temperature

NCP398

Figure 10. Soft Start Up On Load, Vin: yellow, Vout: blue, EN: pink, IOUT: green

Figure 11. Hot Plug On Load, Vin: yellow, Vout: blue, EN: pink, IOUT: green

NCP398

Figure 12. Soft Start On Cout $10 \mu \mathrm{~F}, 500 \mathrm{~mA}$, Vin: yellow, Vout: blue, $\overline{\mathrm{EN}}$: pink, IOUT: green

Figure 13. NCP398 Enable (ENB forced low) Vin: yellow, Vout: blue, EN: pink, IOUT: green

NCP398

Figure 14. NCP398 Disable (ENB forced high) Vin: yellow, Vout: blue, EN: pink, IOUT: green

Figure 15. NCP398 Overvoltage Time Response, Vin: yellow, Vout: blue

NCP398

Figure 16. NCP398 Pull Down Level (following disable) Vin: yellow, Vout: blue, EN: pink

Figure 17. NCP398 Pull Down Level (following UVLO) Vin: yellow, Vout: blue, EN: pink

ORDERING INFORMATION

Device	Marking	Package	Shipping †
NCP398FCCT1G	AA	WLCSP4 $0.84 \times 0.84 \mathrm{~mm}$	3000 Tape / Reel
NCP398MUTBG	AV	UDFN6 $2 \times 2 \mathrm{~mm}$	3000 Tape / Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

UDFN6 2x2, 0.65P
CASE 517AB
ISSUE C
DATE 10 APR 2013
SCALE 4:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
3. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
4. TIE BARS MAY BE VIIIBLE IN THIS VIEW AND ARE CONNECTED TO THE THERMAL PAD

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	
R REF		
b	0.25	
D	0.35	
D2	1.50	
E	BSC	
E	2.00	
E2	0.80	
BSC	1.00	
L	0.65 BSC	
L	0.25	0.35
L1	---	0.15

GENERIC
DETAIL B
ALTERNATE CONSTRUCTIONS

DETAILA ALTERNATE TERMINAL CONSTRUCTIONS

MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\text { ", }}{ }$ may or may not be present.

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON22162D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6 2X2, 0.65P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON05454G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP4, 0.84X0.84 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Interface IC category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
CY7C69356-48LTXC USB3319C-GJ-TR USB3370B-EZK-TR CYPD2120-24LQXI CYPD2122-20FNXIT CYPD2122-24LQXIT LIF-
UC120-SWG36ITR50 UPD360-A/6HX CP2102NP1174GM CG8454AM DPO2039DABQ-13 CY7C68034-56LTXC TUSB213IRGYT TUSB213RGYT USB3503T-I/ML CY7C63310-SXC CY7C68013A-56LTXIT USB3316C-CP-TR USB3250-ABZJ FT220XS-R MAX3107ETG+ MAX14632EZK+T USB3300-EZK LAN9514-JZX CYPD2120-24LQXIT MAX3100CEE+T USB5826-I/KD USB5826/KD USB5906/KD USB5916/KD USB5926/KD TUSB215QRGYTQ1 TUSB522PRGER NB7NPQ701MMTTBG TUSB213RGYR USB5926-I/KD USB5906-I/KD USB4640I-HZH-03 CY7C63813-SXC CY7C63823-SXC CY7C64215-28PVXC CY7C68013A-128AXC CY7C68013A-56LTXI CY7C68013A-56PVXC CY7C68013A-56PVXI CYPD1120-40LQXI AP43771VDKZ-13 AP43771VFBZ-13 DIO32320MP10 HT42B534-2

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

