2A Very Low Ron Switches at Low Vin Voltage

The NCP439 is a very low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

This load switch is a best in class in term of $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ optimization at low $\mathrm{V}_{\text {IN }}$ voltage.

Due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC's on the battery when not used.

Output discharge path is also embedded to eliminate residual voltages on the output.

Proposed in wide input voltage range from 1.0 V to 3.6 V , and a very small $0.96 \times 0.96 \mathrm{~mm}$ WLCSP4, 0.5 mm pitch.

Features

- $1 \mathrm{~V}-3.6 \mathrm{~V}$ Operating Range
- $37 \mathrm{~m} \Omega$ P MOSFET at 1.8 V
- DC Current Up to 2 A
- Output Auto-Discharge
- Active High EN Pin
- WLCSP4 0.96 x 0.96 mm
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING

 DIAGRAM CASE 567FG

AY = Specific Device Code
A = Assembly Location
Y = Year
W = Wafer Lot

PIN DIAGRAM

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

Figure 1. Typical Application Circuit

NCP439

PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Type	Description
IN	A2	POWER	Load-switch input voltage; connect a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	B1	POWER	Ground connection.
EN	B2	INPUT	Enable input, logic high turns on power switch.
OUT	A1	OUTPUT	Load-switch output; connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor from OUT to GND as close as pos- sible to the IC is recommended.

BLOCK DIAGRAM

Figure 2. Block Diagram

NCP439

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
$\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\text {IN }}$, VOUT	IN, OUT, EN, Pins	-0.3 to +4.0	V
$\mathrm{~V}_{\text {IN, }} \mathrm{V}_{\text {OUT }}$	From IN to OUT Pins: Input/Output	0 to +4.0	V
ESD HBM	Human Body Model (HBM) ESD Rating are (Notes 1 and 2)	2500	V
ESD MM	Machine Model (MM) ESD Rating are (Notes 1 and 2)	250	V
ESD CDM	Charge Device Model (CDM) ESD Rating are (Notes 1 and 2)	2000	V
LU	Latch-up protection (Note 3) - Pins IN, OUT, EN	100	mA
$\mathrm{~T}_{J}$	Maximum Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-40 to +150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity (Note 4)	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. According to JEDEC standard JESD22-A108.
2. This device series contains ESD protection and passes the following tests:

Human Body Model (HBM) $\pm 2.5 \mathrm{kV}$ per JEDEC standard: JESD22-A114 for all pins.
Machine Model (MM) ± 250 V per JEDEC standard: JESD22-A115 for all pins.
Charge Device Model (CDM) $\pm 2.0 \mathrm{kV}$ per JEDEC standard: JESD22-C101 for all pins.
3. Latch up Current Maximum Rating: $\pm 100 \mathrm{~mA}$ per JEDEC standard: JESD78 class II.
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {IN }}$	Operational Power Supply			1.0		3.6	V
V_{EN}	Enable Voltage			0		3.6	
T_{A}	Ambient Temperature Range			-40	25	+ 85	${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Decoupling input capacitor			0.1			$\mu \mathrm{F}$
Cout	Decoupling output capacitor			0.1			$\mu \mathrm{F}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Air	WLCSP	kage (Note 5)		100		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Iout	Maximum DC current					2	A
P_{D}	Power Dissipation Rating (Note 6)	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	WLCSP package		0.5		W
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	WLCSP package		0.2		

5. The $R_{\text {®JA }}$ is dependent of the PCB heat dissipation and thermal via.
6. The maximum power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ is given by the following formula:

$$
P_{D}=\frac{T_{J M A X}-T_{A}}{R_{\text {日JA }}}
$$

ELECTRICAL CHARACTERISTICS Min and Max Limits apply for T_{A} between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for VIN between 1.0 V to 3.6 V (Unless otherwise noted). Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ (Unless otherwise noted).

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
POWER SWITCH							
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static drain-source on-state resistance	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		27	34	$\mathrm{m} \Omega$
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$			38	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28	35	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			40	
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		31	39	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			45	
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		37	45	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			52	
		$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		54	70	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			76	
		$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		73	95	
$\mathrm{R}_{\text {DIS }}$	Output discharge path	$\mathrm{EN}=$ low	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$	55	67	95	Ω
TIMINGS							
T_{R}	Output rise time	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$	$\begin{gathered} \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}, \\ \mathrm{R}_{\text {LOAD }}=25 \Omega \mathrm{From} 10 \% \\ \text { to } 90 \% \text { of } \mathrm{V}_{\text {OUT }} \end{gathered}$	40	75	160	$\mu \mathrm{S}$
T_{F}	Output fall time		$\begin{gathered} \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}, \\ \mathrm{R}_{\text {LOAD }}=25 \Omega(\text { Note } 7) \end{gathered}$	10	50	80	$\mu \mathrm{S}$
$\mathrm{T}_{\text {dis }}$	Disable time		From EN vil to $90 \% \mathrm{~V}_{\text {OUT }}$		8.7		$\mu \mathrm{s}$
Ton	Gate turn on		Enable time + Output rise time	70	166	280	$\mu \mathrm{S}$
Ten	Enable time		From EN low to high to $V_{\text {OUT }}=10 \%$ of fully on	30	66	120	$\mu \mathrm{S}$

LOGIC PIN

V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$		0.90			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$				0.5	V

QUIESCENT CURRENT

| I_{Q} | Current consumption | $\mathrm{V}_{\mathbb{N}}=3.3 \mathrm{~V}$,
 $\mathrm{EN}=$ low, No
 load | | | 0.02 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| | $\mathrm{V}_{\mathbb{N}}=3.3 \mathrm{~V}$,
 $\mathrm{EN}=$ high,
 No load | | | 1.6 | 4 | |

[^0]NCP439
TIMINGS

Figure 3. Enable, Rise and fall time

Figure 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}(\mathrm{m} \Omega)$ vs $\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$, No Load

Figure 6. Quiescent Current ($\mu \mathrm{A}$) vs $\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$, In Temperature

Figure 5. $\mathrm{R}_{\mathrm{DS} \text { (on) }}(\mathrm{m} \Omega)$ vs $\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$ In
Temperature (${ }^{\circ} \mathrm{C}$), No Load

Figure 7. Standby Current ($\mu \mathrm{A}$) vs $\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$, In Temperature

Figure 8. Enable Logic Threshold vs V_{IN}

FUNCTIONAL DESCRIPTION

Overview

The NCP439 is high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a range of battery from 1.0 V to 3.6 V .

Enable input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of $\mathrm{V}_{\text {IN }}$ of 1.0 V and EN forced to high level.

Auto Discharge

N -MOSFET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin.

The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and $\mathrm{V}_{\text {IN }}>1.0 \mathrm{~V}$.

In order to limit the current across the internal discharge $\mathrm{N}-\mathrm{MOSFET}$, the typical value is set at 65Ω.

$\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {out }}$ Capacitors

IN and OUT, 100 nF , at least, capacitors must be placed as close as possible the part for stability improvement.

APPLICATION INFORMATION

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{DS}(\mathrm{on})} \times\left(\mathrm{l}_{\mathrm{OUT}}\right)^{2}
$$

$\mathrm{P}_{\mathrm{D}} \quad=$ Power dissipation (W)
$\mathrm{R}_{\mathrm{DS}(\text { on })} \quad=$ Power MOSFET on resistance (Ω)
$\mathrm{I}_{\text {OUT }} \quad=$ Output current (A)

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

$\mathrm{T}_{\mathrm{J}} \quad=$ Junction temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{R}_{\theta \mathrm{JA}} \quad=$ Package thermal resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{T}_{\mathrm{A}} \quad=$ Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

PCB Recommendations

The NCP439 integrates an up to 2 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $\mathrm{R}_{\theta \mathrm{JJA}}$ of the package can be decreased, allowing higher power dissipation.

Figure 9. Routing Example $1 \mathrm{oz}, 2$ Layers, $100^{\circ} \mathrm{C} / \mathrm{W}$

NCP439

Figure 10. Routing Example 2 oz, 4 Layers, $60^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING INFORMATION

Device	Auto Discharge	Marking	Package	Shipping †
NCP439FCT2G	Yes	AY	WLCSP $0.96 \times 0.96 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON79917E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP4, 0.96X0.96 | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

[^0]: 7. Parameters are guaranteed for CLOAD and RLOAD connected to the OUT pin with respect to the ground
 8. Guaranteed by design and characterization, not production tested.
