2 A Single Load Switch for Low Voltage Rail

The NCP456R is a power load switch with very low Ron NMOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, thanks to a best in class current consumption optimization with NMOS structure, leakage currents are drastically decreased. Offering optimized leakages isolation on the ICs connected on the battery.

Reverse voltage protection, from OUT to IN is offered in the NCP456R.

Proposed in wide input voltage range from 0.75 V to 5.5 V, and a very small CSP6 0.85 x 1.25 mm².

Features

- 0.75 V 5.5 V Operating Range
- 24 mΩ N MOSFET
- Vbias Rail Input
- DC Current up to 2 A
- Reverse Blocking Option
- Active High EN Pin
- CSP6, 0.85 x 1.25 mm², Pitch 0.4 mm
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

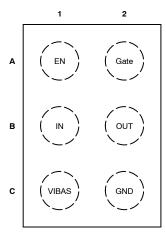
- Notebooks
- Tablets
- Wireless
- Mobile Phones
- Digital Cameras

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

WLCSP6, 1.25x0.85 CASE 567GZ



A = Assembly Location

′ = Year

W = Work Week

PIN CONNECTIONS

Top View

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 11 of this data sheet.

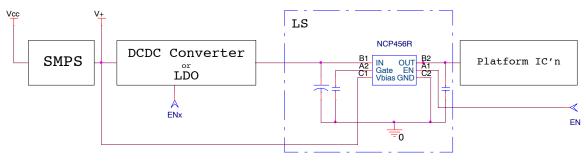


Figure 1. Typical Application Schematic

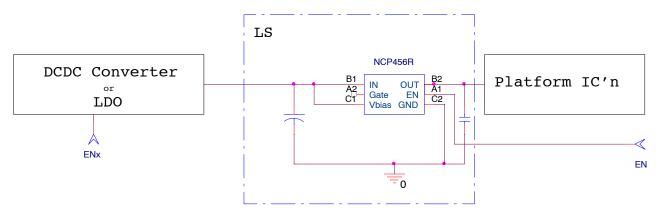


Figure 2. Application Schematic with Vbias Connected to IN and No Gate Delay

PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description	
EN	A1	INPUT	Enable input, logic high turns on power switch .	
IN	B1	POWER	Load-switch input pin.	
VBIAS	C1	POWER	External supply voltage input.	
GATE	A2	INPUT	OUT pin slew rate control (t _{rise}).	
OUT	B2	POWER	Load-switch output pin.	
GND	C2	POWER	Ground connection.	

BLOCK DIAGRAM

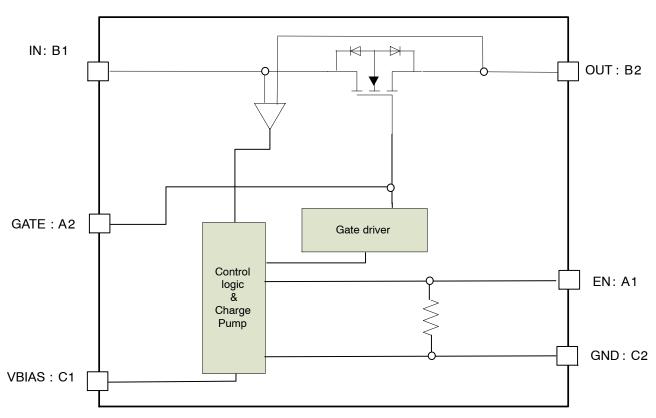


Figure 3. Block Diagram

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, VBIAS, GATE Pins: (Note 1)	V _{EN} , V _{IN} , V _{OUT} , V _{BIAS} , V _{GATE}	-0.3 to + 6.5	V
From IN to OUT Pins: Input/Output (Note 1)	V _{IN,} Vout	±6.5	٧
Human Body Model (HBM) ESD Rating are (Note 2)	ESD HBM	2000	٧
Machine Model (MM) ESD Rating are (Note 2)	ESD MM	200	V
Latch-up Protection (Note 3) Pins IN, OUT, EN, VBIAS and GATE	LU	100	mA
Maximum Junction Temperature	TJ	-40 to + 125	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Moisture Sensitivity (Note 4)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. According to JEDEC standard JESD22-A108.
- 2. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±250 V per JEDEC standard: JESD22–A115 for all pins.
- 3. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II.
- 4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Operational Power Supply		0.75		5.5	V
V _{EN}	Enable Voltage		0		5.5	V
V_{BIAS}	Bias voltage ($V_{BIAS} \ge best of V_{IN, V_{out}}$)		1.2		5.5	V
T_A	Ambient Temperature Range		-40	25	+85	°C
C _{IN}	Decoupling input capacitor		100			nF
C _{OUT}	Decoupling output capacitor		100			nF
R_{\thetaJA}	Thermal Resistance Junction to Air	CSP6 (Note 5)		100		°C/W
I _{OUT}	Maximum DC current				2	Α
P _D	Power Dissipation Rating	(Note 6)		0.2		W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- 5. The $R_{\theta,JA}$ is dependent of the PCB heat dissipation and thermal via.
- 6. The maximum power dissipation (PD) is given by the following formula:

$$P_{D} = \frac{T_{JMAX} - T_{A}}{R_{\theta,JA}}$$

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between $-40^{\circ}C$ to $+85^{\circ}C$ for $V_{IN\ and\ }V_{BIAS}$ between 0.75 V to 5.5 V (Unless otherwise noted). Typical values are referenced to T_A = $+25^{\circ}C$, V_{IN} = 3.3 V and V_{BIAS} = 5 V (Unless otherwise noted).

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
POWER S	WITCH						
			T _A = 25 °C		24	33	mΩ
		$V_{IN} = V_{BIAS} = 5.5 V$	T _J = 125°C			39	
		., .,	T _A = 25°C		24	33	
		$V_{IN} = V_{BIAS} = 3.3 \text{ V}$	T _J = 125°C			39	
		., ., ., ., ., ., ., ., ., ., ., ., ., .	T _A = 25°C		25	34	
		$V_{IN} = V_{BIAS} = 1.8 \text{ V}$	T _J = 125°C			40	
	Static drain- source on-state	V V 15V	T _A = 25°C		26	35	
R _{DS(on)}	resistance for each rail	$V_{IN} = V_{BIAS} = 1.5 V$	T _J = 125°C			41	mΩ
	eaciiiali		T _A = 25°C		28	40	
		$V_{IN} = V_{BIAS} = 1.2 V$	T _J = 125°C			42	
		V _{IN} = 1.0 V.	T _A = 25°C		30	40	
		V _{BIAS} = 1.2 V	T _J = 125°C			42	
		V _{IN} = 0.8 V,	T _A = 25°C		35	45	1
		V _{BIAS} = 1.2 V	T _J = 125°C			50	
TIMINGS	•	•					•
		rise time	No cap on GATE pin		0.11		ms
T_{R}	Output rise time		Gate capacitor = 1 nF		1.4		
			Gate capacitor = 10 nF		15.7		
T _F	Output fall time		C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω (Note 8)		50		μs
		V _{IN} = 5 V	From EN low to high to V _{out} = 10% of fully on- NCP456R. 10 nF gate capacitor		3		ms
T _{en}	Enable time		From EN low to high to V _{out} = 10% of fully on– NCP456R. 1 nF gate capacitor		300		μs
			From EN low to high to V _{out} = 10% of fully on– NCP456R. Without gate capacitor		51		μs
			No cap on GATE pin		0.1	0.3	
T_{R}	Output rise time		Gate capacitor = 1 nF		1		ms
			Gate capacitor = 10 nF		11		
T _F	Output fall time		C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω (Note 8)		60	120	μs
		V _{IN} = 3.3 V	From EN low to high to V _{out} = 10% of fully on- NCP456R. 10 nF Gate capacitor.		2.4		ms
T _{en}	Enable time		From EN low to high to V _{out} = 10% of fully on– NCP456R. 1 nF Gate capacitor.		230		μs
			From EN low to high to V _{out} = 10% of fully on– NCP456R. Without gate capacitor		50	120	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground 8. Guaranteed by design and characterization, not production tested.

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between $-40^{\circ}C$ to $+85^{\circ}C$ for $V_{IN\ and}\ V_{BIAS}$ between 0.75 V to 5.5 V (Unless otherwise noted). Typical values are referenced to T_A = $+25^{\circ}C$, V_{IN} = 3.3 V and V_{BIAS} = 5 V (Unless otherwise noted).

No cap on GATE pin 0.06 0.06 0.06	Symbol	Parameter	Conditions			Тур	Max	Unit
Transpage Tra	TIMINGS							
Gate capacitor = 10 nF				No cap on GATE pin		0.06		
T _F	T_{R}	Output rise time		Gate capacitor = 1 nF		0.6		ms
Ten Enable time V _{IN} = 1.8 V From EN low to high to V _{out} = 10% of fully on-1 on F Gate capacitor 1.8 ms ms				Gate capacitor = 10 nF		6		1
Ten	T _F	Output fall time				35		μs
Ten			V _{IN} = 1.8 V	10% of fully on- 10 nF Gate		1.8		ms
10% of fully on – NCP456R. Without gate capacitor 42	T _{en}	Enable time		10% of fully on– 1 nF Gate		180		μs
The content of the				10% of fully on- NCP456R.		42		μs
Cate capacitor = 10 nF 3.5 3.5				No cap on GATE pin		0.04		
T _F Output fall time V _{IN} = 1 V C _{LOAD} = 1 μF, R _{LOAD} = 25 Ω (Note 8) 20	T_{R}	Output rise time		Gate capacitor = 1 nF		0.35		ms
Ten Enable time ViN = 1 V (Note 8) 20				Gate capacitor = 10 nF		3.5		1
Ten	T _F	Output fall time	V _{IN} = 1 V	C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω (Note 8)		20		μs
Prom EN low to high to Vout = 10% of fully on NCP456R. 40	_			10% of fully on- NCP456R. 1 nF		140		μs
V _{IH} High-level input voltage 0.9 V V _{IL} Low-level input voltage 0.4 V R _{EN} Pull down resistor 3 7 MΩ REVERSE CURRENT BLOCKING V _{rev_thr} Reverse threshold hysteresis V _{out} -V _{in} 32 mV V _{rev_hyst} Reverse threshold hysteresis 50 mV T _{rev} Reverse comparator response time V _{out} -V _{in} > V _{rev_thr} 2.5 μs QUIESCENT CURRENT IVBIAS Bias current for charge pump V _{BIAS} = 3.3 V, EN = high 1.5 6 μA I _{IN} IN Current consumption EN = high 0.01 0.3 μA	l _{en}	Enable time	10% of fully on- NCP456R.		40		μs	
Voltage Vol	LOGIC				•	•	•	
VIL voltage 0.4 V REN Pull down resistor 3 7 MΩ REVERSE CURRENT BLOCKING V _{rev_thr} Reverse threshold V _{out} -V _{in} 32 mV V _{rev_hyst} Reverse threshold hysteresis 50 mV T _{rev} Reverse comparator response time V _{out} -V _{in} > V _{rev_thr} 2.5 μs QUIESCENT CURRENT I _{VBIAS} Bias current for charge pump V _{BIAS} = 3.3 V, EN = high 1.5 6 μA I _{IN} IN Current consumption EN = high 0.01 0.3 μA I _{OT} Standby current EN = low IN standby current V _{OU} = 3.3 V/v 0.01 0.3 μA	V _{IH}	· ·			0.9			V
REVERSE CURRENT BLOCKING V _{rev_thr} Reverse threshold V _{out} -V _{in} 32 mV V _{rev_hyst} Reverse threshold hysteresis 50 mV T _{rev} Reverse comparator response time V _{out} -V _{in} > V _{rev_thr} 2.5 μs QUIESCENT CURRENT I _{VBIAS} Bias current for charge pump V _{BIAS} = 3.3 V, EN = high 1.5 6 μA I _{IN} IN Current consumption EN = high 0.01 0.3 μA I _{CER} Standby current EN = low IN standby current V _{IN} standby current 0.01 0.3 μA	V _{IL}						0.4	V
V_{rev_thr} Reverse threshold V_{out} - V_{in} 32 mV V_{rev_hyst} Reverse threshold hysteresis 50 mV T_{rev} Reverse comparator response time V_{out} - V_{in} > V_{rev_thr} 2.5 μ s QUIESCENT CURRENT I_{VBIAS} Bias current for charge pump V_{BIAS} = 3.3 V, EN = high 1.5 6 μ A I_{IN} IN Current consumption EN = high 0.01 0.3 μ A Interpretation Standby current EN = low IN standby current V_{IN} = 3.3 V/ I_{IN} 0.01 0.3 I_{IN}	R _{EN}	Pull down resistor			3		7	МΩ
Vrev_hyst Reverse threshold hysteresis 50 mV Trev Reverse comparator response time Vout-Vin > Vrev_thr 2.5 μs QUIESCENT CURRENT IVBIAS Bias current for charge pump VBIAS = 3.3 V, EN = high 1.5 6 μA IN Current consumption EN = high 0.01 0.3 μA IN Standby current EN = low IN standby current Vov = 3.3 V/s 0.01 0.3 μA	REVERSE	CURRENT BLOCKING	ì					
V_{rev_hyst} hysteresis 50 mV T_{rev} Reverse comparator response time $V_{out}-V_{in} > V_{rev_thr}$ 2.5 μs QUIESCENT CURRENT I_{VBIAS} Bias current for charge pump $V_{BIAS} = 3.3 \text{ V}$, EN = high 1.5 6 μA I_{IN} IN Current consumption EN = high 0.01 0.3 μA I_{IN} Standby current EN = low IN standby current $V_{IN} = 3.3 \text{ V}$ 0.01 0.3 μA	V _{rev_thr}	Reverse threshold		V_{out} - V_{in}		32		mV
I rev tor response time Vout=Vin > Vrev_thr 2.5 μs QUIESCENT CURRENT I _{VBIAS} Bias current for charge pump V _{BIAS} = 3.3 V, EN = high 1.5 6 μA I _{IN} IN Current consumption EN = high 0.01 0.3 μA I _{STR} Standby current EN = low IN standby current Vov = 3.3 V 0.01 0.3 μA	V _{rev_hyst}					50		mV
I _{VBIAS} Bias current for charge pump V _{BIAS} = 3.3 V, EN = high 1.5 6 μA I _{IN} IN Current consumption EN = high 0.01 0.3 μA I _{ATE} Standby current EN = low IN standby current V _{IV} = 3.3 V 0.01 0.3 μA	T _{rev}		$V_{out}-V_{in} > V_{rev_thr}$			2.5		μs
IVBIAS charge pump $V_{BIAS} = 3.3 \text{ V}$, $EN = high$ 1.5 6 μA IN IN Current consumption $EN = high$ 0.01 0.3 μA Increase Standby current $EN = high$ 0.01 0.3 μA	QUIESCEN	IT CURRENT						
In sumption EN = nigh 0.01 0.3 μA Standby current EN = low IN standby current V _W = 3.3 V 0.01 0.3 μA	I _{VBIAS}		V _{BIAS} = 3.3 V, EN = high			1.5	6	μА
	I _{IN}			EN = high		0.01	0.3	μΑ
	I _{STB}		EN = low, IN	standby current, V _{IN} = 3.3 V		0.01	0.3	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground 8. Guaranteed by design and characterization, not production tested.

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between $-40^{\circ}C$ to $+85^{\circ}C$ for $V_{IN\ and}\ V_{BIAS}$ between 0.75 V to 5.5 V (Unless otherwise noted). Typical values are referenced to T_A = $+25^{\circ}C$, V_{IN} = 3.3 V and V_{BIAS} = 5 V (Unless otherwise noted).

Symbol	Parameter	Conditions Min		Тур	Max	Unit
QUIESCENT CURRENT						
I _{STDVbias}	Standby current V _{BIAS}	V _{BIAS} = 3.3 V EN = low		0.4	2	μΑ
I _{out_leak}	Output leakage current	IN connected to GND, V _{OUT} = 5 V		0.01	0.5	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground 8. Guaranteed by design and characterization, not production tested.

TIMINGS

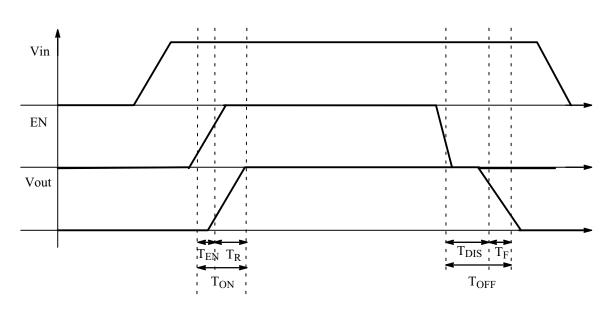


Figure 4. Enable, Rise and Fall Time

TYPICAL CHARACTERISTICS

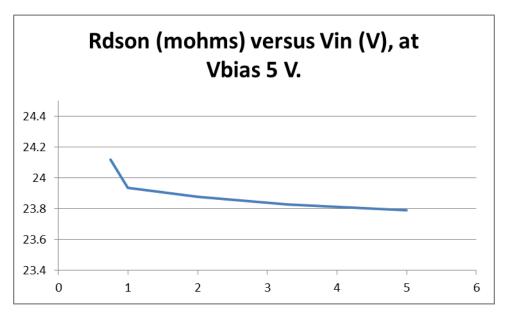


Figure 5. $R_{DS(on)}$ versus V_{in} , Room Temperature, Vbias 5 V

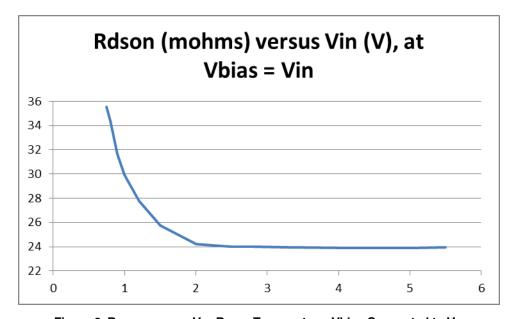


Figure 6. $R_{DS(on)}$ versus V_{in} , Room Temperature, Vbias Connected to V_{in}

FUNCTIONAL DESCRIPTION

Overview

The NCP456R is a high side N Channel MOSFET power distribution switch designed to isolate ICs connected on the battery or DCDC supplies in order to save energy. The part can be used with a wide range of supply from 0.75 V to 5.5 V.

Enable input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing NMOS switch off.

The IN/OUT path is activated with a minimum of V_{BIAS} \geq best of V_{IN} , V_{OUT} = 0.75 V and EN forced to high level.

V_{BIAS} Rail

The core of the IC is supplied due to V_{BIAS} supply rail (common +5 V, 3.3 V, 1.8 V, 1.2 V ...etc). Indeed, no current consumption is used on IN pin, allowing to improve power saving of the rail that must be isolated by the power switch.

If Vbias rail is not available or used, Vbias pin and Vin pin can be connected togheter as close as possible the DUT.

Output Rise Time - Gate Control

The NMOS is control with internal charge pump and driver. A minimum gate slew rate is internally set to avoid

huge inrush current when EN is set from low to high. The default gate slew rate depends on Vin level. The higher Vin level, the longer rise time.

In addition, an external capacitor can be connected between Gate pin and GND in order to slow down the gate rising. See electrical table for more details.

Cin and Cout Capacitors

 $100~\mathrm{nF}$ external capacitors must be connected as close as possible the DUT for noise immunity and better stability. In case of input hot plug (input voltage connected with fast slew rate – few μs – it's strongly recommended to avoid big capacitor connected on the input. That allows to avoid input over voltage transients.

Reverse Blocking Control

A reverse blocking control circuitry is embedded to eliminate leakages from OUT to IN in case of Vout>Vin.

A comparator measures the dropout voltage on the switch between OUT and IN and turn off the NMOS if this voltage exceeds specified reverse voltage. This comparator is available whatever the EN pin level.

APPLICATION INFORMATION

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

		, \2	
$P_{D} =$	Rpg()	$\times (I_{out})^2$	(eq. 1)
U	D2(0H)	(Out)	

 P_D = Power dissipation (W)

 $R_{DS(on)}$ = Power MOSFET on resistance (Ω)

 I_{out} = Output current (A)

 $T_{J} = R_{D} \times R_{\theta JA} + T_{A}$ (eq. 2)

 T_J = Junction temperature (°C)

 $R_{\theta,IA}$ = Package thermal resistance (°C/W)

 T_A = Ambient temperature (°C)

Demoboard

The NCP456R integrates a 2 A rated NMOS FET, and the PCB rules must be respected to properly evacuate the heat out of the silicon.

The package is a CSP and due to the low thermal resistance of the silicon, all the balls can be used to improved power dissipation. Indeed, even if the power crosses the IN / OUT pins only, all the balls around this power area should be connected to the larger PCB area.

In the below PCB example (application demonstration board), all the PCB areas connected to 6 balls are enlarged. In addition vias are connected to bottom side with exactly same form factor of the other PCB side.

Additional improvements can be done also by using more copper thickness and the thinner epoxy as possible.

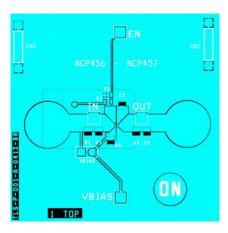


Figure 7. PCB Top View

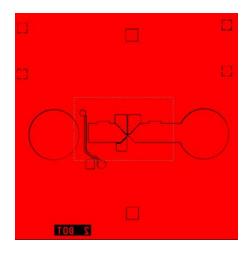
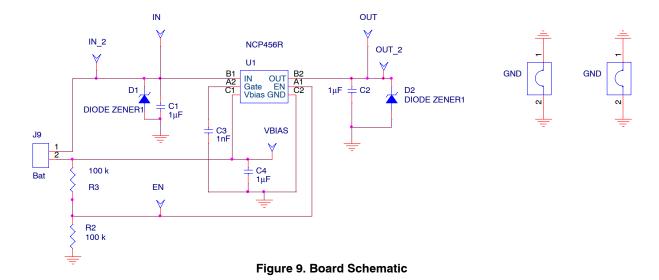



Figure 8. PCB Bottom View

BILL OF MATERIAL

Quantity	Reference schem	Part description	Part number	Manufacturer
2	IN, OUT	Socket, 4mm, metal, PK5	B010	HIRSCHMANN
4	IN_2, OUT_2, VBIAS, EN	HEADER200	2.54 mm, 77313-101-06LF	FC
1	J9 (Bat)	HEADER200-2	2.54 mm, 77313-101-06LF	FC
3	C1, C2, C4	1uF	GRM155R70J105KA12#	Murata
1	C3	1nF, Not mounted	GRM188R60J102ME47#	Murata
1	D1, D2	TVS	ESD9x	ON semiconductor
2	GND2,GND	GND JUMPER	D3082F05	Harvin
2	R2, R3	Resistor 100k 0603	MC 0.063 0603 1% 100K	MULTICOMP
1	U1	Load switch	NCP456 - 457	ON semiconductor

ORDERING INFORMATION

Device	Options	Marking	Package	Shipping
NCP456RFCCT2G	Reverse Voltage Protection	56dYW	WLCSP 1.25 x 0.85 mm (Pb-Free)	3000 Tape / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WLCSP6, 1.25x0.85 CASE 567GZ **ISSUE B**

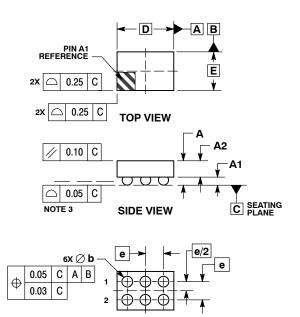
DATE 02 DEC 2014

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.

3.	COPLANARITY APPLIES TO THE SPHE
	CROWNS OF THE SOLDER BALLS.

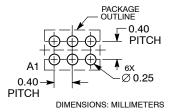
		MILLIMETERS				
	DIM	MIN	MAX			
	Α		0.62			
	A1	0.17	0.23			
Γ	A2	0.36 REF				
Γ	b	0.24	0.29			
	D	1.25 BSC				
	Е	0.85 BSC				
Γ	e	0.40	BSC			

GENERIC MARKING DIAGRAM*



= Assembly Location

= Year


W = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

BOTTOM VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON89059E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP6, 1.25X0.85		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKITIZ LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV