NCP4624

150 mA , Wide Input Range, LDO Linear Voltage Regulator

The NCP4624 is a CMOS 150 mA LDO linear voltage regulator which features high input voltage range while maintaining low quiescent current $2 \mu \mathrm{~A}$ typically. Several protection features like Current Limiting and Reverse Current Protection Circuit are fully integrated to create a versatile device suitable for the power source being in the standby-mode. A high maximum input voltage (11 V) and wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ makes the NCP4624 device with output capacitor as low as $0.1 \mu \mathrm{~F}$ an ideal choice for industrial applications also a portable equipments powered by $2-$ cell $\mathrm{Li}-$ ion battery.

Features

- Operating Input Voltage Range: 2.5 V to Set $\mathrm{V}_{\text {OUT }}+6.5 \mathrm{~V}$, Max. 11 V
- Output Voltage Range: 1.2 to 5.5 V (available in 0.1 V steps)
- $\pm 2 \%$ Output Voltage Accuracy
- Output Current: min. 150 mA
- Line Regulation: 0.02\%/V
- Current Limit Circuit
- Available in SOT-23-5, UDFN4 $1.0 \times 1.0 \mathrm{~mm}$ and SC-88A Package
- Built-in Reverse Current Protection Circuit
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Home Appliances, Industrial Equipment
- Cable Boxes, Satellite Receivers, Entertainment Systems
- Car Audio Equipment, Navigation Systems
- Notebook Adaptors, LCD TVs, Cordless Phones and Private LAN Systems
- Battery-Powered Portable Communication Equipments

Figure 1. Typical Application Schematic

ON Semiconductor ${ }^{\text {TM }}$ www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet.

Figure 2. Simplified Schematic Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.				
SOT-23-5	SC-88A	UDFN 1x1	Pin Name	
1	5	4		Input pin
2	3	2	GND	Ground pin
3	1	3	CE	Chip enable pin ("H" active)
4	2		NC	Non connected
5	4	1	VOUT	Output pin
		*EP	EP	Exposed Pad (leave floating or connect to GND)

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	$\mathrm{V}_{\text {IN }}$	-0.3 to 12	V
Output Voltage	Vout	-0.3 to VIn ≤ 11	V
Chip Enable Input	Vce	-0.3 to VIN ≤ 11	V
Power Dissipation SOT-23-5	P_{D}	420	mW
Power Dissipation uDFN $1.0 \times 1.0 \mathrm{~mm}$		400	
Power Dissipation SC-88A		380	
Junction Temperature	TJ	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
ESD Capability, Human Body Model (Note 2)	ESD HBM	2000	V
ESD Capability, Machine Model (Note 2)	ESD ${ }_{\text {MM }}$	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to Electrical Characteristics and Application Information for safe operating area.
2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, SOT-23-5 Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {өJA }}$	238	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characteristics, uDFN $1 \times 1 \times 1$ Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {QJA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characteristics, SC-88A Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {өJA }}$	263	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=0.1 \mu \mathrm{~F}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 3. Output Voltage vs. Output Current 1.2 V Version ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Figure 5. Output Voltage vs. Output Current 5.5 V Version ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Figure 7. Output Voltage vs. Input Voltage 3.3 V Version

Figure 4. Output Voltage vs. Output Current 3.3 V Version ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Figure 6. Output Voltage vs. Input Voltage 1.2 V Version

Figure 8. Output Voltage vs. Input Voltage 5.5 V Version

Figure 9. Output Voltage vs. Temperature, 1.2 V Version

Figure 11. Output Voltage vs. Temperature, 5.5 V Version

Figure 13. Quiescent Current vs. Input Voltage, 3.3 V Version

T_{J}, JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
Figure 10. Output Voltage vs. Temperature, 3.3 V Version

Figure 12. Quiescent Current vs. Input Voltage, 1.2 V Version

Figure 14. Quiescent Current vs. Input Voltage, 5.5 V Version

Figure 15. Dropout Voltage vs. Output Current, 1.2 V Version

Figure 17. Dropout Voltage vs. Output Current, 5.5 V Version

Figure 19. Output Voltage Noise, 3.3 V Version, $\mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}$, IOUT $=30 \mathrm{~mA}, \mathrm{C}_{\text {in }}=\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}$

Figure 16. Dropout Voltage vs. Output Current, 3.3 V Version

Figure 18. Output Voltage Noise, 1.2 V Version, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}, \mathrm{C}_{\text {in }}=\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}$

Figure 20. Output Voltage Noise, 5.5 V Version, $\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}, \mathrm{C}_{\text {in }}=\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}$

TYPICAL CHARACTERISTICS

Figure 21. PSRR vs. Frequency, 1.2 V Version

Figure 22. PSRR vs. Frequency, 3.3 V Version

Figure 23. PSRR vs. Frequency, 5.5 V Version

Figure 24. Line Transients, 1.2 V Version, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$

TYPICAL CHARACTERISTICS

Figure 25. Line Transients, 3.3 V Version, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$

Figure 26. Line Transients, 5.5 V Version, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$

Figure 27. Load Transients, 1.2 V Version, Load Step 1 mA to 10 mA ,
$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

TYPICAL CHARACTERISTICS

Figure 28. Load Transients, 3.3 V Version, Load Step 1 mA to $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=4.3 \mathrm{~V}$

Figure 29. Load Transients, 5.5 V Version, Load Step 1 mA to $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=6.5 \mathrm{~V}$

Figure 30. Load Transients, 1.2 V Version, Load Step 50 mA to $100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

TYPICAL CHARACTERISTICS

Figure 31. Load Transients, 3.3 V Version, Load Step 50 mA to $100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=4.3 \mathrm{~V}$

Figure 32. Load Transients, 5.5 V Version, Load Step 50 mA to $100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=6.5 \mathrm{~V}$

Figure 33. Turn-on Behavior, 1.2 Version,
$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$

TYPICAL CHARACTERISTICS

Figure 34. Turn-on Behavior, 3.3 Version,
$\mathrm{V}_{\mathrm{IN}}=4.3 \mathrm{~V}$

Figure 35. Turn-on Behavior, 5.5 Version,

$$
\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}
$$

Figure 36. Turn-off Behavior, 1.2 Version,
$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$

TYPICAL CHARACTERISTICS

Figure 37. Turn-off Behavior, 3.3 Version,

$$
\mathrm{V}_{\mathrm{IN}}=4.3 \mathrm{~V}
$$

Figure 38. Turn-off Behavior, 5.5 Version,
$\mathrm{V}_{\mathrm{IN}}=6.5 \mathrm{~V}$

APPLICATION INFORMATION

A typical application circuit for NCP4624 series is shown in the Figure 39.

Figure 39. Typical Application Schematic

Input Decoupling Capacitor (C1)

A 100 nF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4624. Higher values and lower ESR improves line transient response.

Output Decoupling Capacitor (C2)

A 100 nF ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. If tantalum capacitor is used, and its ESR is high, the loop oscillation may result. The capacitor should be connected as close as possible to the output and ground pin. Larger values and lower ESR improves dynamic parameters.

Enable Operation

The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull
down current source which assure off state of LDO in case the CE pin will stay floating. If the enable function is not needed connect CE pin to VIN.

The D version of the NCP4624 includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode.

Thermal Consideration

As a power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications.

Reverse Current Protection Circuit

Internal Reverse Current Circuitry stops the reverse current from VOUT pin to GND pin and VIN pin when $\mathrm{V}_{\text {OUT }}$ goes higher than $\mathrm{V}_{\text {IN }}$ voltage or $\mathrm{V}_{\text {SET }}$ voltage. $\mathrm{V}_{\text {SET }}$ means voltage given by voltage version. The parasitic diode of PMOS pass device is internally switched to reverse direction before $\mathrm{V}_{\text {IN }}$ becomes lower than $\mathrm{V}_{\text {OUT }}$. The operation coverage of the Reverse Current Protection Circuit is $\mathrm{V}_{\text {OUT }}>1.5 \mathrm{~V}$. In order to avoid unstable behavior a hysteresis is created by different threshold of detecting voltage Vrev_det and releasing voltage Vrev_rel. See Figures 40 and 41 for details of configuration.

Figure 41. Reverse Current Protection Mode

ESR versus Output Current

When using the NCP4624 devices, consider the following points:

- The relation between Output Current IOUT and ESR of the output capacitor are shown below in Figures 42, 43 and 44.

Figure 42. ESR vs. Load Current

- The conditions when the device performs stable operation are marked as the hatched area in the charts.

Figure 43. ESR vs. Load Current

Figure 44. ESR vs. Load Current

ORDERING INFORMATION

Device	Marking	Nominal Output Voltage	Feature	Package	Shipping
NCP4624DMU12TCG	5A	1.2 V	Enable High,	UDFN4 (Pb-Free)	10000 / Tape \& Reel
			Auto discharge		
NCP4624DMU30TCG	5X	3.0 V	Enable High,	UDFN4 (Pb-Free)	10000 / Tape \& Reel
			Auto discharge		
NCP4624DMU33TCG	6A	3.3 V	Enable High,	UDFN4 (Pb-Free)	10000 / Tape \& Reel
			Auto discharge		
NCP4624DMU50TCG	6 T	5.0 V	Enable High,	$\begin{gathered} \text { UDFN4 } \\ \text { (Pb-Free) } \end{gathered}$	10000 / Tape \& Reel
			Auto discharge		
NCP4624DSN12T1G	F12	1.2 V	Enable High,	$\begin{aligned} & \hline \text { SOT-23-5 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
			Auto discharge		
NCP4624DSN18T1G	F18	1.8 V	Enable High,	$\begin{aligned} & \hline \text { SOT-23-5 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
			Auto discharge		
NCP4624DSN33T1G	F33	3.3 V	Enable High,	SOT-23-5 (Pb-Free)	3000 / Tape \& Reel
			Auto discharge		
NCP4624DSN50T1G	F50	5.0 V	Enable High,	$\begin{aligned} & \hline \text { SOT-23-5 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
			Auto discharge		
NCP4624DSQ12T1G	AT12	1.2. V	Enable High,	$\begin{gathered} \hline \text { SC-88A } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
			Auto discharge		
NCP4624DSQ33T1G	AT33	3.3 V	Enable High,	$\begin{gathered} \text { SC-88A } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
			Auto discharge		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 2:1
DATE 28 JAN 2011

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. Dimensioning and tolerancing per ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MLLLIMETERS.
3. DATUM C IS THE SEATING PLANE.

| |
| :--- |$|$| MILLIMETERS | | |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | --- | 1.45 |
| A1 | 0.00 | 0.10 |
| A2 | 1.00 | 1.30 |
| b | 0.30 | 0.50 |
| c | 0.10 | 0.25 |
| D | 2.70 | 3.10 |
| E | 2.50 | 3.10 |
| E1 | 1.50 | 1.80 |
| e | 0.95 | BSC |
| L | 0.20 | --- |
| L1 | 0.45 | 0.75 |

GENERIC MARKING DIAGRAM*

XXX $=$ Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70518A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-23 5-LEAD | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 4:1

UDFN4 1.0x1.0, 0.65P

CASE 517BR-01

ISSUE O

DATE 27 OCT 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.15 AND AND IS MEASURED BETWE
0.20 mm FROM TERMINAL.
0.20 mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED COPLANARITY APPLIES TO THE EX
PAD AS WELL AS THE TERMINALS.

| | MILLIMETERS | |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | --- | 0.60 |
| A1 | 0.00 | 0.05 |
| A3 | 0.10 | |
| REF | | |
| D | 0.20 | |
| 0.00 | | BSC |
| D2 | 0.43 | |
| E | 0.53 | |
| e | 0.00 | |
| BSC | | |
| L | 0.65 | BSC |
| L2 | 0.20 | 0.30 |
| L3 | 0.02 | 0.37 |

RECOMMENDED

GENERIC MARKING DIAGRAM*

1 | XX |
| :---: |
| MM |

XX = Specific Device Code
MM = Date Code
*This information is generic. Please refer to device data sheet for actual part marking.
$\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON53254E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN4, 1.0X1.0, 0.65P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LDO Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G

TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7
IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF

