NCP4672

Linear Voltage Regulator Dual, $V_{\text {in }}$ and $V_{\text {out }}$ Voltage Detector

The NCP4672 is a dual linear voltage regulator with input voltage and output voltage detectors. This part is useful in systems where multiple voltages are required such as for core and I/O. The NCP4672 is very accurate at 2% over full input voltage and full load current. The NCP4672 eliminates the need for external voltage supervision due to the two built in voltage detectors. The voltage detector on the input is set to 7.0 V . The output voltage detector is for channel 1 and is set to 2.9 V . An external capacitor is used to set the duration of this reset signal. Other features include short circuit protection and thermal shutdown protection. The NCP4672 has been designed to work with a $4.7 \mu \mathrm{~F}$ output capacitor having an ESR between 0.1Ω and 5.0Ω.

Features

- Accuracy: 2% at Full Voltage and Load
- Excellent Ripple Rejection: $70 \mathrm{~dB} @ 1 \mathrm{kHz}$
- Voltage Detector for Input Voltage
- Voltage Detector for Output Voltage
- Programmable Delay of Reset Signal
- Thermal Short Circuit Protection
- This is a $\mathrm{Pb}-$ Free Device

Typical Application

- Small Core and I/O Power
- Consumer Equipment
- Measurement Equipment
- Industrial Equipment

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com
$\left.\begin{array}{ll}\text { MARKING } \\ \text { DIAGRAM }\end{array}\right\}$

PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Shipping †
NCP4672DR2G	SOIC-8 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Typical Application Circuit

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {inmax }}$	-0.3 ~ 18	V
Output Voltage	$V_{\text {out }}$	-0.3 to $\mathrm{V}_{\text {in }}+0.3$	V
Output Current 1 Output Current 2	$\mathrm{I}_{\text {out1max }}$ $\mathrm{I}_{\text {out2max }}$	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Short Circuit Duration	-	Infinite	-
Power Dissipation and Thermal Characteristics - SOIC-8 Power Dissipation Thermal Resistance, Junction-to-Ambient Minimum Pad Size $200 \mathrm{~mm}^{2}$ Pad Size (Note 1) Thermal Resistance, Junction-to-Case	P_{D} $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {өJC }}$	Internally Limited $\begin{aligned} & 190 \\ & 160 \\ & 25 \end{aligned}$	$\begin{gathered} \text { W } \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {solder }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Refer to Figure 4 for more information.

PIN DESCRIPTION

Pin Number	Symbol	Description
1	$\mathrm{~V}_{\text {in }}$ RST	Open-collector, active-low output of the input voltage detector with hysteresis. Threshold levels are typical $7.0 \mathrm{~V} / 7.35 \mathrm{~V}$ at V_{CC} pin.
2	$\mathrm{~V}_{\mathrm{O}}$ RST	Active-low output of the reset generator. Reset generator is based on sensing of the $\mathrm{V}_{\text {out1 }}$ voltage. Sensing is with hysteresis - threshold levels are typically 2.9 $\mathrm{V} / 2.95 \mathrm{~V}$ at $\mathrm{V}_{\text {out1 }}$. Reset is generated at rising edge of the $\mathrm{V}_{\text {out1 }}$ and it's duration is set by external capacitor connected to C_{D} pin.
3	C_{D}	Programmable delay of the reset generator. Delay is adjusted by inserting a capacitor between C_{D} and GND (typically 10 ms for 10 nF capacitor).
4	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage
5	$\mathrm{~V}_{\text {out2 }}$	$1.8 \mathrm{~V} / 80 \mathrm{~mA}$ LDO Regulator Output
6	GND2	Ground for $\mathrm{V}_{\text {out2 }}$ (internally connected with GND1)
7	GND1	Ground for $\mathrm{V}_{\text {out1 }}$ (internally connected with GND2)
8	$\mathrm{~V}_{\text {out1 }}$	$3.5 \mathrm{~V} / 30 \mathrm{~mA}$ LDO Regulator Output

RECOMMENDED CONDITIONS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}\right.$ Ceramic, $\mathrm{C}_{\text {out }}=4.7 \mu \mathrm{~F}$)

Characteristics	Symbol	Min	Typ	Max	Unit
Input Voltage	$\mathrm{V}_{\text {in }}$	3.8	12	16	V
Output Current (where $\mathrm{V}_{\text {out }}$ remains within accuracy)	$\mathrm{I}_{\text {out1 }}$	0	-	20	mA
	$\mathrm{I}_{\text {out } 2}$	0	-	70	

NCP4672

Figure 1.

ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}$ Ceramic, $\mathrm{C}_{\text {out }}=4.7 \mu \mathrm{~F}$ with ESR $=0.1-5.0 \Omega, \mathrm{~V}_{\text {in }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ	Max	Unit
Output Voltage $V_{\text {out1 }}\left(V_{\text {in }}=4.5 \mathrm{~V}, I_{\text {out } 1}=20 \mathrm{~mA}\right)$ $V_{\text {out2 }}\left(V_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {out2 }}=40 \mathrm{~mA}\right)$	$V_{\text {adj }}$	$\begin{aligned} & 3.43 \\ & 1.764 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.8 \end{aligned}$	$\begin{gathered} 3.57 \\ 1.836 \end{gathered}$	V
Line Regulation $\begin{aligned} & V_{\text {out1 } 1}\left(V_{\text {in }}=4.5 \mathrm{~V}, I_{\text {out1 }}=20 \mathrm{~mA}\right) \\ & \mathrm{V}_{\text {out2 }}\left(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\text {out } 2}=40 \mathrm{~mA}\right) \end{aligned}$	Regline	-	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	mV
Load Regulation $V_{\text {out1 }}\left(V_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {out1 }}=0.1 \mathrm{~mA}\right.$ to 20 mA$)$ $V_{\text {out2 }}\left(V_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {out2 }}=0.1 \mathrm{~mA}\right.$ to 70 mA$)$	Regload	-	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	mV
Dropout Voltage $V_{\text {out } 1}\left(V_{\text {in }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {out } 1}=20 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out1 }}$	-	150	300	mV
Ground Pin Current $\begin{aligned} & \left.V_{\text {in }}=8.0 \mathrm{~V}, I_{\text {out1 }}=I_{\text {out2 }}=0 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}, I_{\text {out1 }}=I_{\text {out2 }}=0 \mathrm{~mA}, \text { Rpu }=\text { infinite }\right) \end{aligned}$	$\mathrm{I}_{\text {GND }}$	-	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	2.0 -	mA
Short Current Limit $V_{\text {out1 }}$ $V_{\text {out2 }}$	Isc	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	$\begin{gathered} 60 \\ 150 \end{gathered}$	-	mA
Thermal Shutdown		-	165	-	${ }^{\circ} \mathrm{C}$
Temperature Coefficient $V_{\text {out } 1}\left(T_{J}=-30\right.$ to $\left.85^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {out }}=20 \mathrm{~mA}\right)$ $V_{\text {out2 }}\left(T_{J}=-30\right.$ to $\left.85^{\circ} \mathrm{C}, V_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {out2 }}=40 \mathrm{~mA}\right)$	T_{C}	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	ppm/ ${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Ripple Rejection (Note 6) } \\ & \mathrm{V}_{\text {out1 }}\left(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {ripple }}=1.0 \mathrm{~V}, \mathrm{I}_{\text {out1 }}=20 \mathrm{~mA}, 120 \mathrm{~Hz}\right) \\ & \mathrm{V}_{\text {out } 2}\left(\mathrm{~V}_{\text {in }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {ripple }}=1.0 \mathrm{~V}, \mathrm{I}_{\text {out } 2}=40 \mathrm{~mA}, 120 \mathrm{~Hz}\right) \end{aligned}$	R_{R}	-	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	-	dB
Output Noise Voltage $\mathrm{V}_{\text {out } 1}\left(\mathrm{~V}_{\text {in }}=4.5 \mathrm{~V}, \mathrm{f}=20 \mathrm{~Hz}-80 \mathrm{kHz}, \mathrm{I}_{\text {out } 1}=20 \mathrm{~mA}\right)$ $V_{\text {out2 }}\left(V_{\text {in }}=4.5 \mathrm{~V}, \mathrm{f}=20 \mathrm{~Hz}-80 \mathrm{kHz}, \mathrm{I}_{\text {out2 }}=40 \mathrm{~mA}\right)$	V_{n}	-	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	-	$\mu \mathrm{V}_{\text {rms }}$

$V_{\text {in }}$ Detect

Detecting Voltage $\mathrm{L}\left(\mathrm{V}_{\text {in }}=\mathrm{H}\right.$ to L$)$	$\mathrm{V}_{\text {SLin }}$	6.72	7.0	7.28	V
Detecting Voltage $\mathrm{H}\left(\mathrm{V}_{\text {in }}=\mathrm{L}\right.$ to H$)$	$\mathrm{V}_{\text {SHin }}$	-	7.35	-	V
Hysteresis Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{H}\right.$ to L to H$)$	$\Delta \mathrm{V}_{\text {Sin }}$	140	350	560	mV
$\mathrm{V}_{\text {SLin }}$ Temperature Coefficient $\left(\mathrm{T}_{\mathrm{J}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {Slin }} \mathrm{T}_{\mathrm{C}}$	-	100	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Low-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}, \mathrm{Vt1}=5.0 \mathrm{~V}, \mathrm{Rt} 1=10 \mathrm{k} \Omega\right)($ Note 5$)$	$\mathrm{V}_{\text {OLin } 1}$	-	100	200	mV
Threshold Operating Voltage $\left(\mathrm{V}_{\text {OPLin }}=\mathrm{Vt1}=1.0 \mathrm{~V}\right)$	$\mathrm{V}_{\text {OLin } 2}$	-	-	0.4	V

$V_{\text {out }}$ Detect

Detecting Voltage $\mathrm{L}\left(\mathrm{V}_{\text {in }}=\mathrm{H}\right.$ to L$)$	$\mathrm{V}_{\text {SLout }}$	2.78	2.9	3.020	V
Detecting Voltage $\mathrm{H}\left(\mathrm{V}_{\text {in }}=\mathrm{L}\right.$ to H$)$	$\mathrm{V}_{\text {SHout }}$	-	2.95	-	V
Hysteresis Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{H}\right.$ to L to H$)$	$\Delta \mathrm{V}_{\text {Sout }}$	25	50	100	mV
$\mathrm{V}_{\text {SLin }}$ Temperature Coefficient $\left(\mathrm{T}_{\mathrm{J}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {SLin }} \mathrm{T}_{\mathrm{C}}$	-	100	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Low-Level Output Voltage $\left(\mathrm{V}_{\text {out }}=2.6 \mathrm{~V}\right)$	$\mathrm{V}_{\text {OLout } 1}$	-	100	200	mV
Threshold Operating Voltage $\left(\mathrm{V}_{\text {OPLout }}=0.85 \mathrm{~V}\right)$	$\mathrm{V}_{\text {OLout } 2}$	-	-	0.4	V
Reset Delay Time $\left(\mathrm{C}_{\mathrm{D}}=10 \mathrm{nF}\right)$	$\mathrm{t}_{\text {PLH }}$	5	10	15	ms
"L" Transmission Delay Time $\left(\mathrm{C}_{\mathrm{D}}=10 \mathrm{nF}\right)$	tPHL	-	30	90	$\mu \mathrm{~s}$

2. This device series contains ESD protection and exceeds the following tests:

Human Body Model 2000 V per MIL-STD-883, Method 3015
Machine Model Method 200 V .
3. The maximum package power dissipation is: $P_{D}=\frac{T_{J}(\max)-T_{A}}{R_{\theta} J A}$
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
5. Refer to Figure 3.
6. Guaranteed by design.

Figure 2. Dual Regulator Timing

Figure 3. Threshold Operating Voltage $\mathrm{V}_{\text {OPLin }}$ Under Condition $\mathrm{V}_{\text {OLin }}=0.4 \mathrm{~V}$

NCP4672

Figure 4. SOP-8 Thermal Resistance versus
P.C.B. Copper Area

Figure 5. Quiescent Current versus Input Voltage

Figure 6. Peak Current Limit

Figure 7. Delay Time versus Capacitance

Figure 8. $\mathbf{V}_{\text {in }}$ and $\mathbf{V}_{\text {in RST }}$ versus Time

Figure 10. $\mathrm{V}_{\text {out } 1}$ Ripple Rejection

Figure 9. V_{o} and $\mathrm{V}_{\mathrm{O} \text { RST }}$ versus Time

Figure 11. $\mathrm{V}_{\text {out } 2}$ Ripple Rejection

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

