NCP583

Ultra-Low Iq 150 mA CMOS LDO Regulator with Enable

The NCP583 series of low dropout regulators are designed for portable battery powered applications which require precise output voltage accuracy and low quiescent current. These devices feature an enable function which lowers current consumption significantly and are offered in two small packages; SC-82AB and the SOT-563.

A $1.0 \mu \mathrm{~F}$ ceramic capacitor is the recommended value to be used with these devices on the output pin.

Features

- Ultra-Low Dropout Voltage of 250 mV at 150 mA
- Excellent Line Regulation of $0.05 \% / \mathrm{V}$
- Excellent Load Regulation of 20 mV
- High Output Voltage Accuracy of $\pm 2 \%$
- Ultra-Low Iq Current of $1.0 \mu \mathrm{~A}$
- Very Low Shutdown Current of $0.1 \mu \mathrm{~A}$
- Wide Output Voltage Range of 1.5 V to 3.3 V
- Low Temperature Drift Coefficient on the Output Voltage of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Fold Back Protection Circuit
- Input Voltage up to 6.5 V
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Portable Equipment
- Hand-Held Instrumentation
- Camcorders and Cameras

Figure 1. Simplified Block Diagram

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

NCP583

PIN FUNCTION DESCRIPTION

SOT-563 Pin	SC-82AB Pin	Symbol	Description
1	4	$V_{\text {in }}$	Power supply input voltage.
2	2	GND	Power supply ground.
3	3	$V_{\text {out }}$	Regulated output voltage.
4	-	NC	No connect.
5	-	GND	Power supply ground.
6	1	CE	Chip enable pin.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {in }}$	6.5	V
Input Voltage (CE Pin)	$\mathrm{V}_{\text {CE }}$	6.5	V
Output Voltage	$\mathrm{V}_{\text {out }}$	-0.3 to $\mathrm{V}_{\text {in }}+0.3$	V
Output Current	$\mathrm{I}_{\text {out }}$	180	mA
Thermal Junction Resistance SC-82AB SOT-563	$\mathrm{R}_{\text {日JA }}$	263	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Capability, Human Body Model, $\mathrm{C=}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$		200	
ESD Capability, Machine Model, C $=200 \mathrm{pF}, \mathrm{R}=0 \Omega$	$\mathrm{ESD}_{\text {HBM }}$	2000	V
Operating Ambient Temperature Range	$\mathrm{ESD}_{\mathrm{MM}}$	200	V
Maximum Junction Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{J}(\max)}$	125	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}+1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Voltage	$V_{\text {in }}$	1.7	-	6.0	V
Output Voltage ($1.0 \mu \mathrm{~A} \leq \mathrm{I}_{\text {out }} \leq 30 \mathrm{~mA}$)	$V_{\text {out }}$	$\mathrm{V}_{\text {out }} \times 0.98$	-	$\mathrm{V}_{\text {out }} \times 1.02$	V
Line Regulation ($\mathrm{l}_{\text {out }}=30 \mathrm{~mA}$) $\left(\mathrm{V}_{\text {out }}+0.5 \mathrm{~V} \leq \mathrm{Vin} \leq 6.0 \mathrm{~V}\right)$	Regline	-	0.05	0.20	\%/V
Load Regulation ($1.0 \mu \mathrm{~A} \leq \mathrm{I}_{\text {out }} \leq 150 \mathrm{~mA}$)	Regload	-	20	40	mV
$\begin{aligned} & \text { Dropout Voltage }\left(l_{\text {out }}=150 \mathrm{~mA}\right) \\ & V_{\text {out }}=1.5 \mathrm{~V} \\ & 1.7 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 1.9 \mathrm{~V} \\ & 2.1 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 2.7 \mathrm{~V} \\ & 2.8 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 3.3 \mathrm{~V} \end{aligned}$	V_{DO}	- - -	$\begin{aligned} & 0.60 \\ & 0.50 \\ & 0.35 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.75 \\ & 0.55 \\ & 0.40 \\ & \hline \end{aligned}$	V
Quiescent Current ($\mathrm{l}_{\text {out }}=0 \mathrm{~mA}$)	19	-	1.0	1.5	$\mu \mathrm{A}$
Output Current	$\mathrm{I}_{\text {out }}$	150	-	-	mA
Shutdown Current (VCE = Gnd)	ISD	-	0.1	1.0	$\mu \mathrm{A}$
Output Short Circuit Current ($\mathrm{V}_{\text {out }}=0$)	lim	-	40	-	mA
$\begin{array}{r} \text { Enable Input Threshold Voltage - High } \\ \text { - Low } \end{array}$	Vthenh Vthenl	$\begin{gathered} 1.2 \\ 0 \end{gathered}$		$\begin{aligned} & 6.0 \\ & 0.3 \end{aligned}$	V
Output Voltage Temperature Coefficient $\text { (lout }=30 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \text {) }$	$\Delta \mathrm{V}_{\text {out }} / \Delta \mathrm{T}$	-	± 100	-	ppm/ ${ }^{\circ} \mathrm{C}$

NCP583
TYPICAL CHARACTERISTICS

Figure 2. Output Voltage vs. Output Current

Figure 4. Quiescent Current vs. Input Voltage

Figure 6. Quiescent Current vs. Temperature

Figure 3. Output Voltage vs. Input Voltage

Figure 5. Output Voltage vs. Temperature

Figure 7. Quiescent Current vs. Temperature

NCP583
TYPICAL CHARACTERISTICS

Figure 8. Dropout Voltage vs. Output Current

Figure 10. Dropout Voltage vs. Output Current

Figure 9. Dropout Voltage vs. Output Current

Figure 11. Ripple Rejection vs. Frequency

Figure 12. Ripple Rejection vs. Frequency

NCP583

TYPICAL CHARACTERISTICS

Figure 13. Input Transient Response
$\left(\mathrm{V}_{\text {out }}=2.8 \mathrm{~V}, \mathrm{I}_{\text {out }}=30 \mathrm{~mA}, \mathrm{tr}=\mathrm{tf}=5.0 \mu \mathrm{~s}, \mathrm{C}_{\text {in }}=0\right)$

NCP583

TYPICAL CHARACTERISTICS

Figure 14. Load Transient Response
$\left(\mathrm{V}_{\text {out }}=2.8 \mathrm{~V}, \mathrm{tr}=\mathrm{tf}=5.0 \mu \mathrm{~s}, \mathrm{~V}_{\text {in }}=3.8 \mathrm{~V}\right)$

NCP583

TYPICAL CHARACTERISTICS

Figure 15. Load Transient Response
$\left(\mathrm{V}_{\text {out }}=2.8 \mathrm{~V}, \mathrm{tr}=\mathrm{tf}=5.0 \mu \mathrm{~s}, \mathrm{~V}_{\text {in }}=3.8 \mathrm{~V}\right)$

APPLICATION INFORMATION

Input Decoupling

A $1.0 \mu \mathrm{~F}$ ceramic capacitor is the recommended value to be connected between V_{in} and GND. For PCB layout considerations, the traces of $\mathrm{V}_{\text {in }}$ and GND should be sufficiently wide in order to minimize noise and prevent unstable operation.

Output Decoupling

It is recommended to use a $0.1 \mu \mathrm{~F}$ ceramic capacitor on the $V_{\text {out }}$ pin. For better performance, select a capacitor with low Equivalent Series Resistance (ESR). For PCB layout considerations, place the output capacitor close to the output pin and keep the leads short as possible.

ORDERING INFORMATION

Device	Output Type / Features	Nominal Output Voltage	Marking	Package	Shipping \dagger
NCP583SQ15T1G	Active High w/Enable	1.5	A5	$\begin{aligned} & \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ18T1G	Active High w/Enable	1.8	A8	$\begin{aligned} & \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ25T1G	Active High w/Enable	2.5	B5	$\begin{aligned} & \hline \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ27T1G	Active High w/Enable	2.7	B7	$\begin{aligned} & \hline \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ28T1G	Active High w/Enable	2.8	B8	$\begin{aligned} & \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ30T1G	Active High w/Enable	3.0	C0	$\begin{aligned} & \hline \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583SQ33T1G	Active High w/Enable	3.3	C3	$\begin{aligned} & \text { SC-82AB } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
NCP583XV15T2G	Active High w/Enable	1.5	G15B	$\begin{aligned} & \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV18T2G	Active High w/Enable	1.8	G18B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV25T2G	Active High w/Enable	2.5	G25B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV26T2G	Active High w/Enable	2.6	G26B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV28T2G	Active High w/Enable	2.8	G28B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV29T2G	Active High w/Enable	2.9	G29B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV30T2G	Active High w/Enable	3.0	G30B	$\begin{aligned} & \hline \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV31T2G	Active High w/Enable	3.1	G31B	$\begin{aligned} & \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCP583XV33T2G	Active High w/Enable	3.3	G33B	$\begin{aligned} & \text { SOT-563 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel

[^0]SC-82AB
CASE 419C-02
ISSUE F
DATE 22 JUN 2012
SCALE 4:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. 419C-01 OBSOLETE. NEW STANDARD IS 419C-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE MOLD F
BURRS.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	1.80	2.20	0.071	0.087
B	1.15	1.35	0.045	0.053
C	0.80	1.10	0.031	0.043
D	0.20	0.40	0.008	0.016
F	0.30	0.50	0.012	0.020
G	1.10	1.50	0.043	0.059
H	0.00	0.10	0.000	0.004
J	0.10	0.26	0.004	0.010
K	0.10	---	0.004	---
L	0.05	BSC	0.002	BSC
N	0.20 REF		0.008	
REF				
S	1.80	2.40	0.07	0.09

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
M = Month Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18939C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-82AB | PAGE 1 OF 1 |

```
SOT-563, }6\mathrm{ LEAD
    CASE 463A
    ISSUE H
```

DATE 26 JAN 2021
SCALE 4:1
NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.

RECDMMENDED MIUNTING FEDTPRINT*

* For additional information on our Pb-Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SGLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
STYLE 1:
PIN 1 1. EMITTER 1
2. BASE 1
3. CDLLECTRR 2
4. EMITTER 2
5. BASE 2
6. CDLLECTAR 1
STYLE 4:
PIN 1. CDLLECTIR
2. CDLLECTIR
3. BASE
4. EMITTER
5. CILLECTIR
6. CDLLECTOR
STYLE 7:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHIDE
5. ANDDE
6. CATHIDE
STYLE 10:
PIN 1. CATHODE 1
2. N/C
3. CATHODE 2
4. ANDDE 2
5. N/C
6. ANDDE 1
STYLE
PIN 1.
1.
EMITTER 1
2. BASE 1
3. CDLLECTDR 2
4. EMITTER
6. CDLLECTOR 1
STYLE 2: STYLE 3:

STYLE 2
STYLE S: STYLE 3:
PIN 1. EMITTER 1
2. EMITTER 2
3. BASE 2
4. CDLLECTDR 2
5. BASE 1
6. CLLLECTIR 1

STYLE 5:
PIN 1. CATHODE
2. CATHIDE
3. ANDDE
4. ANDDE
5. CATHIDE
6. CATHIDE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SDURCE
5. DRAIN
6. DRAIN

PIN 1. CATHODE 1
2. CATHIDE 1
3. ANDDE/ANDDE 2
4. CATHODE 2
5. CATHODE 2
6. ANDDE/ANDDE 1

STYLE 6:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHEDE

STYLE 9:
PIN 1. SIURCE 1
2. GATE 1
3. DRAIN 2
4. SIURCE 2
5. GATE ?
6. DRAIN 1

```
GENERIC MARKING DIAGRAM*
```



```
XX = Specific Device Code
M = Month Code
- = Pb-Free Package
```

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " F ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOT-563, 6 LEAD	PAGE 20 F

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LDO Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G

TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7
IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
 Other voltages are available. Consult your ON Semiconductor representative.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

