# Configurable 5.0 A ACOT Step Down Converter

The NCP6356B is a synchronous ACOT (Adaptive Constant On–time) buck converter optimized to supply the different sub systems of portable applications powered by one cell Li–Ion or three cell Alkaline/NiCd/NiMH batteries. The device is able to deliver up to 5.0 A, with programmable output voltage from 0.6 V to 1.4 V. Operation at up to 2.4 MHz switching frequency allows the use of small components. Synchronous rectification and automatic PFM Pseudo–PWM (PPWM) transitions improve overall solution efficiency. The NCP6356B is in a space saving, low profile 2.0 x 1.6 mm CSP–20 package.

#### **Features**

- Input Voltage Range from 2.5 V to 5.5 V: Battery and 5 V Rail Powered Applications
- Programmable Output Voltage: 0.6 V to 1.4 V in 6.25 mV Steps
- Up to 2.4 MHz Switching Frequency with On Chip Oscillator
- Uses 330 nH Inductor and at least 22 μF Capacitors for Optimized Footprint and Solution Thickness
- PFM/PPWM Operation for Optimum Efficiency
- Low 60 μA Quiescent Current
- I<sup>2</sup>C Control Interface with Interrupt and Dynamic Voltage Scaling Support
- Enable / VSEL Pins, Power Good / Interrupt Signaling
- Thermal Protections and Temperature Management
- Transient Load Helper: Share the Same Rail with Another Rail
- Small 2.0 x 1.6 mm / 0.4 mm Pitch CSP Package
- These are Pb-Free Devices

#### **Typical Applications**

- Smartphones
- Webtablets

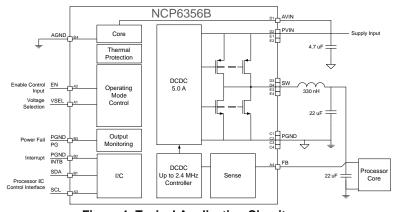



Figure 1. Typical Application Circuit



#### ON Semiconductor®

www.onsemi.com



#### MARKING DIAGRAM



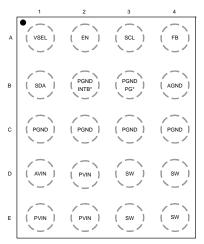
c = blank: production

= S: 0.95 V

= N: 1.20 V

A = Assembly Location

WL = Wafer Lot


Y = Year

WW = Work Week

= Pb-Free Package

Pb–Free indicator, G or microdot (■), may or may not be present

#### **PIN OUT**



(Top View)
\*Optional

#### ORDERING INFORMATION

See detailed ordering and shipping information on page 30 of this data sheet.

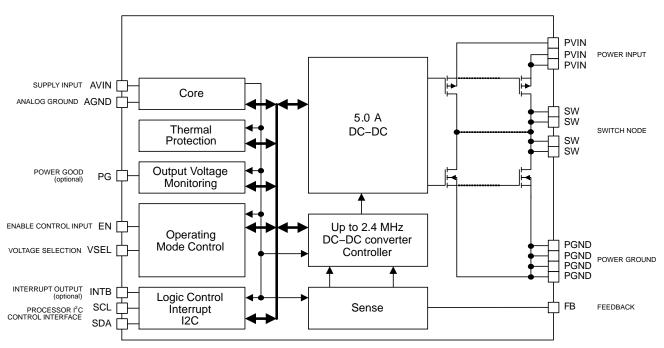



Figure 2. Simplified Block Diagram

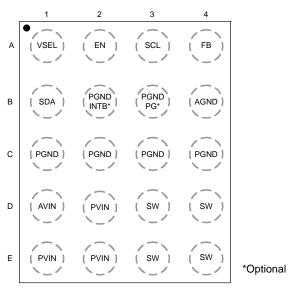



Figure 3. Pin Out (Top View)

#### PIN FUNCTION DESCRIPTION

| Pin               | Name          | Туре                            | Description                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| REFERENC          | E             | -                               |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| D1                | AVIN          | Analog Input                    | Analog Supply. This pin is the device analog and digital supply. Can be connected directly to the VIN plane just next to the 4.7 $\mu$ F PVIN capacitor or to a dedicated 1.0 $\mu$ F ceramic capacitor. Must be equal to PVIN.                                                                                                                                                 |  |  |  |
| B4                | AGND          | Analog Ground                   | Analog Ground. Analog and digital modules ground. Must be connected to the system ground.                                                                                                                                                                                                                                                                                       |  |  |  |
| CONTROL           | AND SERIAL II | NTERFACE                        |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| A2                | EN            | Digital Input                   | Enable Control. Active high will enable the part. There is an internal pull down resistor on this pin.                                                                                                                                                                                                                                                                          |  |  |  |
| A1                | VSEL          | Digital Input                   | Output voltage / Mode Selection. The level determines which of two programmable configurations to utilize (operating mode / output voltage). There is an internal pull down resistor on this pin; can be left unconnected if not used.                                                                                                                                          |  |  |  |
| A3                | SCL           | Digital Input                   | I <sup>2</sup> C interface <b>Clock</b> line. There is an internal pull down resistor on this pin; can unconnected if not used                                                                                                                                                                                                                                                  |  |  |  |
| B1                | SDA           | Digital<br>Input/Output         | I <sup>2</sup> C interface Bi–directional <b>Data</b> line. There is an internal pull down resistor or pin; can be left unconnected if not used                                                                                                                                                                                                                                 |  |  |  |
| В3                | PGND<br>PG    | Digital Output<br>Analog Ground | Power Good open drain output. Must be connected to the ground plane if not used.                                                                                                                                                                                                                                                                                                |  |  |  |
| B2                | PGND<br>INTB  | Digital Output<br>Analog Ground | Interrupt open drain output. Must be connected to the ground plane if not used.                                                                                                                                                                                                                                                                                                 |  |  |  |
| DC to DC C        | ONVERTER      | -                               |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| D2, E1, E2        | PVIN          | Power Input                     | Switch Supply. These pins must be decoupled to ground by a 4.7 $\mu$ F ceramic capacitor. It should be placed as close as possible to these pins. All pins must be used with short thick connections. Must be equal to AVIN.                                                                                                                                                    |  |  |  |
| D3, D4,<br>E3, E4 | SW            | Power Output                    | Switch Node. These pins supply drive power to the inductor. Typical application uses 0.33 $\mu$ H inductor; refer to application section for more information. All pins must be used with short thick connections.                                                                                                                                                              |  |  |  |
| C1, C2,<br>C3, C4 | PGND          | Power Ground                    | Switch Ground. This pin is the power ground and carries the high switching current. High quality ground must be provided to prevent noise spikes. To avoid high-density current flow in a limited PCB track, a local ground plane that connects all PGND pins together is recommended. Analog and power grounds should only be connected together in one location with a trace. |  |  |  |
| A4                | FB            | Analog Input                    | <b>Feedback Voltage input.</b> Must be connected to the output capacitor positive terminal with a trace, not to a plane. This is the positive input to the error amplifier.                                                                                                                                                                                                     |  |  |  |
|                   |               |                                 |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

#### **MAXIMUM RATINGS**

| Rating                                                   | Symbol                             | Value                         | Unit    |
|----------------------------------------------------------|------------------------------------|-------------------------------|---------|
| Analog and power pins: AVIN, PVIN, SW, INTB, FB (Note 1) | V <sub>A</sub>                     | -0.3 to +6.0                  | V       |
| I <sup>2</sup> C pins: SDA, SCL                          | V <sub>I2C</sub>                   | -0.3 to +6.0                  | V       |
| Digital pins: EN, VSEL<br>Input Voltage<br>Input Current | V <sub>DG</sub><br>I <sub>DG</sub> | $-0.3$ to $V_A + 0.3 \le 6.0$ | V<br>mA |
| Human Body Model (HBM) ESD Rating (Note 2)               | ESD HBM                            | 2500                          | V       |
| Charged Device Model (CDM) ESD Rating (Note 2)           | ESD CDM                            | 1250                          | V       |
| Latch Up Current: (Note 3) Digital Pins All Other Pins   | lLU                                | 10<br>100                     | mA      |
| Storage Temperature Range                                | T <sub>STG</sub>                   | -65 to +150                   | °C      |
| Maximum Junction Temperature                             | T <sub>JMAX</sub>                  | -40 to +150                   | °C      |
| Moisture Sensitivity (Note 4)                            | MSL                                | Level 1                       |         |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Refer to ELECTRICAL CHĂRACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
- This device series contains ESD protection and passes the following ratings: Human Body Model (HBM) ± 2.5 kV per JEDEC standard: JESD22–A114. Charged Device Model (CDM) ± 1.25 V per JEDEC standard: JESD22–C101 Class IV
- 3. Latch up Current per JEDEC standard: JESD78 class II.
- 4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

#### **OPERATING CONDITIONS**

| Symbol                | Parameter                                        | Conditions            | Min  | Тур  | Max  | Unit |
|-----------------------|--------------------------------------------------|-----------------------|------|------|------|------|
| $AV_{IN}$ , $PV_{IN}$ | Power Supply                                     | $AV_{IN} = PV_{IN}$   | 2.5  |      | 5.5  | V    |
| T <sub>A</sub>        | Ambient Temperature Range                        |                       | -40  | 25   | +85  | °C   |
| $T_J$                 | Junction Temperature Range (Note 6)              |                       | -40  | 25   | +125 | °C   |
| $R_{	heta JA}$        | Thermal Resistance Junction to Ambient (Note 7)  | CSP-20 on Demo-board  | _    | 55   | _    | °C/W |
| P <sub>D</sub>        | Power Dissipation Rating (Note 8)                | T <sub>A</sub> ≤ 85°C | _    | 727  | _    | mW   |
| P <sub>D</sub>        | Power Dissipation Rating (Note 8)                | T <sub>A</sub> = 65°C | _    | 1090 | _    | mW   |
| L                     | Inductor for DC to DC converter (Note 5)         |                       | 0.26 | 0.33 | 0.56 | μΗ   |
| Co                    | Output Capacitor for DC to DC Converter (Note 5) |                       | 15   | _    | 150  | μF   |
| Cin                   | Input Capacitor for DC to DC Converter (Note 5)  |                       | 4.5  | _    | _    | μF   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- 5. Including de–ratings (Refer to the Application Information section of this document for further details)
- 6. The thermal shutdown set to 150°C (typical) avoids potential irreversible damage on the device due to power dissipation.
- 7. The R<sub>0JA</sub> is dependent of the PCB heat dissipation. Board used to drive this data was a NCP6356BEVB board. It is a multilayer board with 1-once internal power and ground planes and 2-once copper traces on top and bottom of the board.
- 8. The maximum power dissipation (PD) is dependent by input voltage, maximum output current and external components selected.

$$R_{\theta JA} = \frac{125 - T_A}{P_D}$$

| Cumbal                                    | Dorometer                         | Conditions                                                                                       | Min  | Trees | May  | 1154 |
|-------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|------|-------|------|------|
| Symbol                                    | Parameter                         | Conditions                                                                                       | Min  | Тур   | Max  | Unit |
|                                           | RRENT: PINS AVIN – PVINX          | 1                                                                                                |      | T     | 1    |      |
| I <sub>Q-PPWM</sub>                       | Operating quiescent current PPWM  | DCDC active in Forced PPWM, no load                                                              | _    | 22    | 40   | mA   |
| I <sub>Q PFM</sub>                        | Operating quiescent current PFM   | DCDC active in Auto mode<br>no load – minimal switching                                          | -    | 60    | 100  | μΑ   |
| I <sub>SLEEP</sub>                        | Product sleep mode current        | EN high, DCDC off or<br>EN low and $I^2$ C pull up<br>$V_{IN} = 5.5 \text{ V}$                   | -    | 5     | 10   | μΑ   |
| I <sub>OFF</sub>                          | Product in off mode               | EN, VSEL and Sleep_Mode low,<br>No I <sup>2</sup> C pull up<br>V <sub>IN</sub> = 5.5 V           | -    | 0.8   | 3    | μΑ   |
| DC to DC C                                | ONVERTER                          |                                                                                                  |      |       |      |      |
| PV <sub>IN</sub> Input Voltage Range      |                                   |                                                                                                  | 2.5  | _     | 5.5  | V    |
| I <sub>OUTMAX</sub>                       | Maximum Output Current            | lpeak[10] = 00 (Note 11)                                                                         | 3.5  | _     | -    | Α    |
|                                           |                                   | lpeak[10] = 01 (Note 11)                                                                         | 4.0  | -     | -    | 1    |
|                                           |                                   | lpeak[10] = 10 (Note 11)                                                                         | 4.5  | _     | -    |      |
|                                           |                                   | lpeak[10] = 11 (Note 11)                                                                         | 5.0  | _     | _    | 1    |
| Δ <sub>VOUT</sub> Output Voltage DC Error |                                   | Forced PPWM mode, V <sub>IN</sub> range, No load                                                 | -1.5 | _     | 1.5  | %    |
|                                           |                                   | Forced PPWM mode, V <sub>IN</sub> range,<br>I <sub>OUT</sub> up to I <sub>OUTMAX</sub> (Note 11) | -2   | _     | 2    |      |
|                                           |                                   | Auto mode, V <sub>IN</sub> range,<br>I <sub>OUT</sub> up to I <sub>OUTMAX</sub> (Note 11)        | -3   | _     | 2    |      |
| F <sub>SW</sub>                           | Switching Frequency               |                                                                                                  | 2.16 | 2.40  | 2.64 | MHz  |
| R <sub>ONHS</sub>                         | P-Channel MOSFET On<br>Resistance | From PVIN to SW<br>V <sub>IN</sub> = 5.0 V                                                       | _    | 22    | 32   | mΩ   |
| R <sub>ONLS</sub>                         | N-Channel MOSFET On<br>Resistance | From SW to PGND<br>V <sub>IN</sub> = 5.0 V                                                       | -    | 12    | 18   | mΩ   |
| I <sub>PK</sub>                           | Peak Inductor Current             | Open loop – lpeak[10] = 00 (Note 11)                                                             | 4.6  | 5.2   | 5.8  | Α    |
|                                           |                                   | Open loop – lpeak[10] = 01 (Note 11)                                                             | 5.2  | 5.8   | 6.4  | 1    |
|                                           |                                   | Open loop – lpeak[10] = 10 (Note 11)                                                             | 5.6  | 6.2   | 6.8  |      |
|                                           |                                   | Open loop – lpeak[10] = 11                                                                       | 6.2  | 6.8   | 7.4  | 1    |
| DC <sub>LOAD</sub>                        | Load Regulation                   | I <sub>OUT</sub> from 0 A to I <sub>OUTMAX</sub> (Note 11)<br>Forced PPWM mode                   | -    | 5     | _    | mV   |
| DC <sub>LINE</sub>                        | Line Regulation                   | $2.5 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V} \text{ (Note 11)}$<br>Forced PPWM mode | _    | 6     | -    | mV   |
| AC <sub>LOAD</sub>                        | Transient Load Response           | $t_r = t_f = 100 \text{ ns}$<br>Load step 1.5 A (Note 11)                                        | -    | ±20   | -    | mV   |
| AC <sub>LINE</sub>                        | Transient Line Response           | $t_{r}$ = $t_{f}$ = 10 $\mu s$<br>Line step 3.3 V / 3.9 V (Note 11)                              | _    | ±20   | -    | mV   |
| D                                         | Maximum Duty Cycle                |                                                                                                  | -    | 100   | -    | %    |
| t <sub>START</sub>                        | Turn on time                      | Time from EN transitions from Low to High to 90% of Output Voltage (DVS[10] = 00b)               | -    | 100   | 130  | μs   |

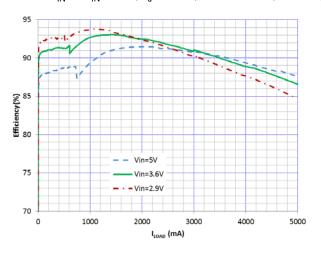
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>9.</sup> Refer to the Application Information section of this data sheet for more details.

<sup>10.</sup> Devices that use non-standard supply voltages which do not conform to the intent I<sup>2</sup>C bus system levels must relate their input levels to the V<sub>DD</sub> voltage to which the pull-up resistors R<sub>P</sub> are connected.

<sup>11.</sup> Guaranteed by design and characterized.

| Symbol                | Parameter                                      | Conditions                                             | Min      | Тур      | Max      | Unit     |
|-----------------------|------------------------------------------------|--------------------------------------------------------|----------|----------|----------|----------|
| DC to DC CC           | DNVERTER                                       |                                                        | -        | -        | <u>-</u> | <u>-</u> |
| R <sub>DISDCDC</sub>  | DCDC Active Output Discharge                   | V <sub>OUT</sub> = 1.15 V                              | _        | 12       | 25       | Ω        |
| EN, VSEL              |                                                |                                                        |          |          |          |          |
| V <sub>IH</sub>       | High input voltage                             |                                                        | 1.05     | _        | _        | V        |
| $V_{IL}$              | Low input voltage                              |                                                        | -        | -        | 0.4      | V        |
| T <sub>FTR</sub>      | Digital input X Filter                         | EN, VSEL rising and falling<br>DBN_Time = 01 (Note 11) | 0.5      | -        | 4.5      | μS       |
| I <sub>PD</sub>       | Digital input X Pull-Down (input bias current) | For EN and VSEL pins                                   | -        | 0.05     | 1.00     | μΑ       |
| PG (Optiona           | l)                                             |                                                        |          |          |          |          |
| $V_{PGL}$             | Power Good Threshold                           | Falling edge as a percentage of nominal output voltage | 86       | 90       | 94       | %        |
| V <sub>PGHYS</sub>    | Power Good Hysteresis                          |                                                        | 0        | 3        | 5        | %        |
| T <sub>RT</sub>       | Power Good Reaction Time for DCDC              | Falling (Note 11)<br>Rising (Note 11)                  | _<br>3.5 | 3.5<br>- | -<br>14  | μS       |
| $V_{PGL}$             | Power Good low output voltage                  | I <sub>PG</sub> = 5 mA                                 | -        | -        | 0.2      | V        |
| PG <sub>LK</sub>      | Power Good leakage current                     | 3.6 V at PG pin when power good valid                  | -        | _        | 100      | nA       |
| $V_{PGH}$             | Power Good high output voltage                 | Open drain                                             | -        | -        | 5.5      | V        |
| INTB (Option          | nal)                                           |                                                        |          |          |          |          |
| V <sub>INTBL</sub>    | INTB low output voltage                        | I <sub>INT</sub> = 5 mA                                | 0        | -        | 0.2      | V        |
| $V_{INTBH}$           | INTB high output voltage                       | Open drain                                             | -        | -        | 5.5      | V        |
| INTB <sub>LK</sub>    | INTB leakage current                           | 3.6 V at INTB pin when INTB valid                      | -        | -        | 100      | nA       |
| I <sup>2</sup> C      |                                                |                                                        |          |          |          |          |
| V <sub>I2CIL</sub>    | SCL, SDA low input voltage                     | SCL, SDA pin (Notes 10, 11)                            | -        | -        | 0.4      | V        |
| V <sub>I2CIH</sub>    | SCL high input voltage                         | SCL pin (Notes 10, 11)                                 | 1.6      | -        | -        | V        |
|                       | SDA high input voltage                         | SDA pin (Notes 10, 11)                                 | 1.2      | -        | -        |          |
| V <sub>I2COL</sub>    | SDA low output voltage                         | I <sub>SINK</sub> = 3 mA (Note 11)                     | -        | -        | 0.4      | V        |
| F <sub>SCL</sub>      | I <sup>2</sup> C clock frequency               | (Note 11)                                              | -        | -        | 3.4      | MHz      |
| TOTAL DEVI            | CE                                             |                                                        |          |          |          |          |
| $V_{UVLO}$            | Under Voltage Lockout                          | V <sub>IN</sub> falling                                | _        | _        | 2.5      | V        |
| $V_{UVLOH}$           | Under Voltage Lockout Hysteresis               | V <sub>IN</sub> rising                                 | 60       | -        | 200      | mV       |
| T <sub>SD</sub>       | Thermal Shut Down Protection                   |                                                        | -        | 150      | _        | °C       |
| T <sub>WARNING</sub>  | Warning Rising Edge                            |                                                        | -        | 135      | -        | °C       |
| T <sub>PWTH</sub>     | Pre – Warning Threshold                        | I <sup>2</sup> C default value                         | -        | 105      | -        | °C       |
| T <sub>SDH</sub>      | Thermal Shut Down Hysteresis                   |                                                        | -        | 30       | -        | °C       |
| T <sub>WARNINGH</sub> | Thermal warning Hysteresis                     |                                                        | -        | 15       | -        | °C       |
| T <sub>PWTH H</sub>   | Thermal pre-warning Hysteresis                 |                                                        | _        | 6        | _        | °C       |


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>9.</sup> Refer to the Application Information section of this data sheet for more details.

<sup>10.</sup> Devices that use non-standard supply voltages which do not conform to the intent I<sup>2</sup>C bus system levels must relate their input levels to the V<sub>DD</sub> voltage to which the pull-up resistors R<sub>P</sub> are connected.

<sup>11.</sup> Guaranteed by design and characterized.

 $\begin{tabular}{l} \textbf{TYPICAL OPERATING CHARACTERISTICS} \\ \textbf{AV}_{IN} = \textbf{PV}_{IN} = 3.6 \ \text{V}, \ \textbf{T}_J = +25 ^{\circ} \text{C}, \ \textbf{DCDC} = 1.15 \ \text{V}, \ \textbf{L} = 0.33 \ \mu \textbf{H} \ \textbf{DFE252012F} - \textbf{C}_{OUT} = 2 \ \textbf{x} \ 22 \ \mu \textbf{F} \ 0603, \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{C$ 



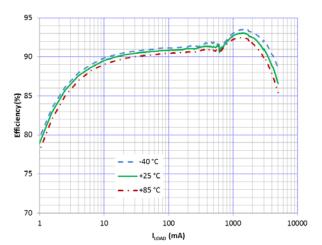



Figure 4. Efficiency vs.  $I_{LOAD}$  and  $V_{IN}$ V<sub>OUT</sub> = 1.39375 V, SPM5030 Inductor

Vin=5V

Efficiency(%)

75

70

1000

Figure 5. Efficiency vs. I<sub>LOAD</sub> and Temperature V<sub>OUT</sub> = 1.39375 V, SPM5030 Inductor

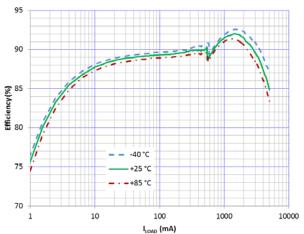



Figure 6. Efficiency vs.  $\rm I_{LOAD}$  and  $\rm V_{IN}$ V<sub>OUT</sub> = 1.15 V, SPM5030 Inductor

I<sub>LOAD</sub> (mA)

3000

4000

5000

2000

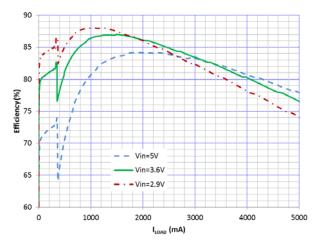



Figure 7. Efficiency vs.  $\ensuremath{I_{LOAD}}$  and Temperature V<sub>OUT</sub> = 1.15 V, SPM5030 Inductor

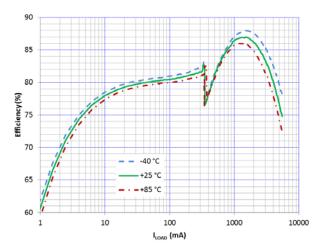
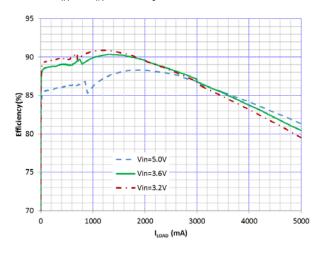
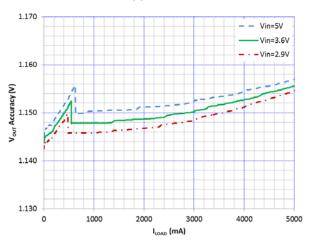




Figure 8. Efficiency vs.  $\rm I_{LOAD}$  and  $\rm V_{IN}$ V<sub>OUT</sub> = 0.60 V, SPM5030 Inductor

Figure 9. Efficiency vs.  $I_{\mbox{\scriptsize LOAD}}$  and Temperature V<sub>OUT</sub> = 0.60 V, SPM5030 Inductor


 $\begin{tabular}{l} \textbf{TYPICAL OPERATING CHARACTERISTICS} \\ \textbf{AV}_{IN} = \textbf{PV}_{IN} = 3.6 \ \text{V}, \ \textbf{T}_J = +25 ^{\circ} \text{C}, \ \textbf{DCDC} = 1.15 \ \text{V}, \ \textbf{L} = 0.33 \ \mu \textbf{H} \ \textbf{DFE252012F} - \textbf{C}_{OUT} = 2 \ \textbf{x} \ 22 \ \mu \textbf{F} \ 0603, \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{C$ 



95 90 Efficiency(%) 75 70 10 100 1000 10000 I<sub>LOAD</sub> (mA)

Figure 10. Efficiency vs.  $I_{\mbox{\scriptsize LOAD}}$  and  $V_{\mbox{\scriptsize IN}}$  $V_{OUT} = 1.15 V$ 

Figure 11. Efficiency vs.  $I_{\mbox{\scriptsize LOAD}}$  and Temperature  $V_{OUT} = 1.15 V$ 



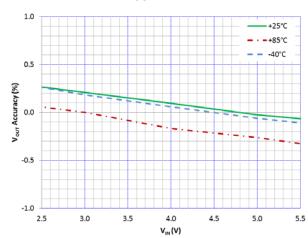
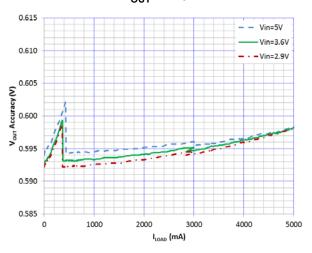




Figure 12.  $V_{OUT}$  Accuracy vs.  $I_{LOAD}$  and  $V_{IN}$  $V_{OUT} = 1.15 \text{ V}$ 

Figure 13. V<sub>OUT</sub> Accuracy vs. V<sub>IN</sub> and Temperature, V<sub>OUT</sub> = 1.15 V



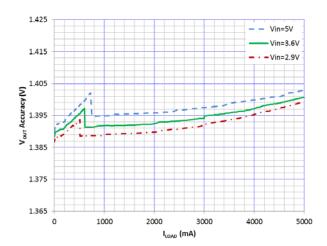
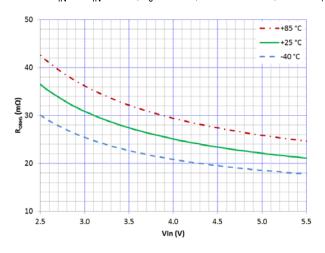




Figure 14.  $V_{OUT}$  Accuracy vs.  $I_{LOAD}$  and  $V_{IN}$  $V_{OUT} = 0.60 V$ 

Figure 15.  $V_{OUT}$  Accuracy vs.  $I_{LOAD}$  and  $V_{IN}$ V<sub>OUT</sub> = 1.39375 V

 $\begin{tabular}{l} \textbf{TYPICAL OPERATING CHARACTERISTICS} \\ \textbf{AV}_{IN} = \textbf{PV}_{IN} = 3.6 \ \text{V}, \ \textbf{T}_J = +25^{\circ} \textbf{C}, \ \textbf{DCDC} = 1.15 \ \text{V}, \ \textbf{L} = 0.33 \ \mu \textbf{H} \ \textbf{DFE252012F} - \textbf{C}_{OUT} = 2 \ \textbf{x} \ 22 \ \mu \textbf{F} \ 0603, \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{C}$ 



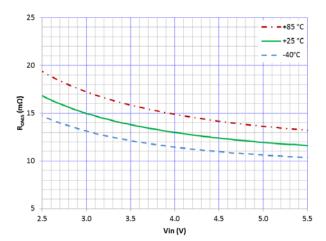
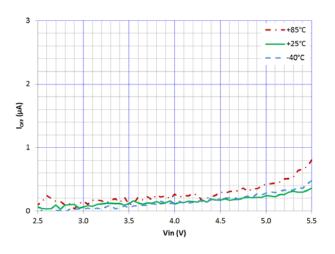




Figure 16. HSS  $R_{\text{ON}}$  vs.  $V_{\text{IN}}$  and Temperature

Figure 17. LSS  $R_{\mbox{\scriptsize ON}}$  vs.  $V_{\mbox{\scriptsize IN}}$  and Temperature



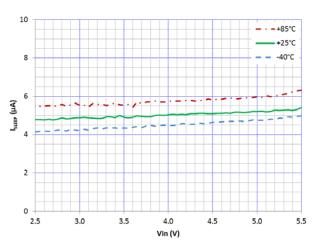
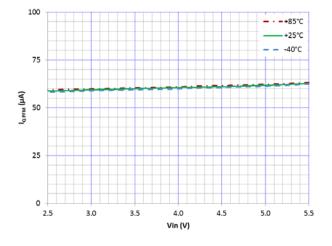




Figure 18. I<sub>OFF</sub> vs. V<sub>IN</sub> and Temperature

Figure 19. I<sub>SLEEP</sub> vs. V<sub>IN</sub> and Temperature



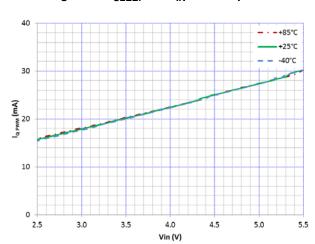
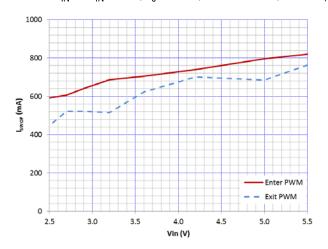




Figure 20.  $I_{\mbox{\scriptsize Q}\mbox{\scriptsize PFM}}$  vs.  $V_{\mbox{\scriptsize IN}}$  and Temperature

Figure 21.  $I_{\mbox{\scriptsize Q PPWM}}$  vs.  $V_{\mbox{\scriptsize IN}}$  and Temperature

 $\begin{tabular}{l} \textbf{TYPICAL OPERATING CHARACTERISTICS} \\ \textbf{AV}_{IN} = \textbf{PV}_{IN} = 3.6 \ \text{V}, \ \textbf{T}_J = +25^{\circ} \textbf{C}, \ \textbf{DCDC} = 1.15 \ \text{V}, \ \textbf{L} = 0.33 \ \mu \textbf{H} \ \textbf{DFE252012F} - \textbf{C}_{OUT} = 2 \ \textbf{x} \ 22 \ \mu \textbf{F} \ 0603, \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{F} \ 0603 \ \textbf{C}_{IN} = 10 \ \mu \textbf{C}$ 



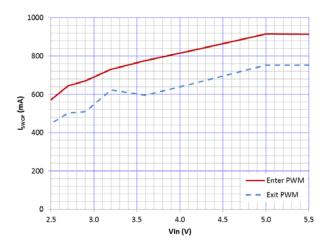
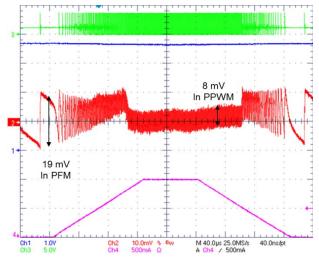




Figure 22. Switchover Point V<sub>OUT</sub> = 1.15 V

Figure 23. Switchover Point V<sub>OUT</sub> = 1.4 V



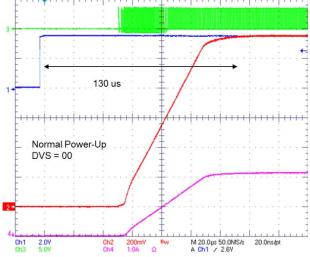



Figure 24. Ripple

Figure 25. Normal Power Up, V<sub>OUT</sub> = 1.15 V, DVS[1..0] = 00

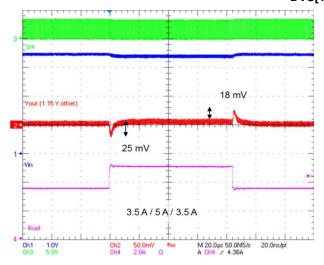
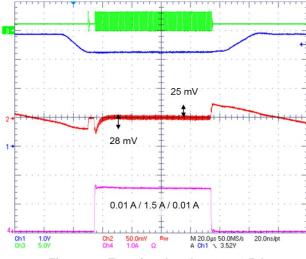




Figure 26. Transient Load 3.5 A to 5.0 A –  $V_{IN}$  = 3.2 V

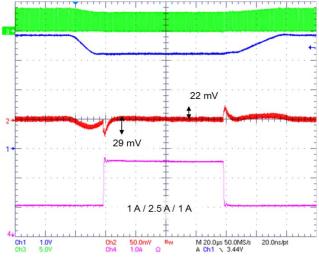
#### TYPICAL OPERATING CHARACTERISTICS

 ${\rm AV_{IN}} = {\rm PV_{IN}} = 3.6 \text{ V}, \\ {\rm T_J} = +25 ^{\circ}{\rm C}, \\ {\rm DCDC} = 1.15 \text{ V}, \\ {\rm L} = 0.33 \text{ } \mu{\rm H} \text{ } \\ {\rm DFE252012F} - {\rm C_{OUT}} = 2 \text{ x } \\ {\rm 22 \text{ }} \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm 0603}, \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F} \text{ } \\ {\rm C_{IN}} = 10 \text{ } \mu{\rm F$ 



20mV

18 mV


20mV

0.01 A / 1.5 A / 0.01 A

Ch1 1.0V Ch2 50.0mV Ew M 20.0 ps 50.0 Ms/s 20.0 ns.px
Ch3 5.0V Ch4 1.0A Q A Ch1 / 3.52V

Figure 27. Transient Load 0.01 to 1.5 A Transient Line 3.9 to 3.3 V – Auto Mode

Figure 28. Transient Load 0.01 to 1.5 A Transient Line 3.3 to 3.9 V – Auto Mode



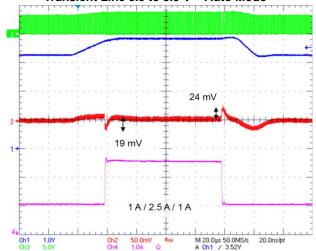
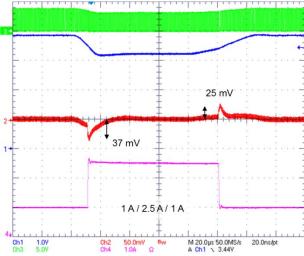




Figure 29. Transient Load 1 to 2.5 A Transient Line 3.9 to 3.3 V – Auto Mode

Figure 30. Transient Load 1 to 2.5 A Transient Line 3.3 to 3.9 V – Auto Mode



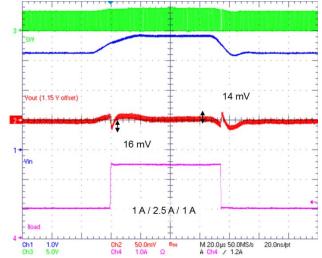



Figure 31. Transient Load 1 to 2.5 A during Transient Line 3.9 – 3.3 V Auto Mode

Figure 32. Transient Load 1 to 2.5 A during Transient Line 3.3 to 3.9 V – Auto Mode

#### DETAILED OPERATING DESCRIPTION

#### **Detailed Description**

The NCP6356B is voltage mode stand—alone DC to DC converter optimized to supply different sub systems of portable applications powered by one cell Li—Ion or three cells Alkaline/NiCd/NiMh. It can deliver up to 5 A at an I<sup>2</sup>C selectable voltage ranging from 0.6 V to 1.40 V. The switching frequency up to 2.4 MHz allows the use of small output filter components. Power Good indicator and Interrupt management are available. Operating modes, configuration, and output power can be easily selected either by using digital I/O pins or by programming a set of registers using an I<sup>2</sup>C compatible interface capable of operation up to 3.4 MHz. Default I<sup>2</sup>C settings are factory programmable.

#### **DC to DC Converter Operation**

The converter integrates both high side and low side (synchronous) switches. Neither external transistors nor diodes are required for NCP6356B operation. Feedback and compensation network are also fully integrated.

It uses the ACOT (Adaptive Constant On–Time) control scheme and can operate in two different modes: PFM and PPWM (Pseudo–PWM). The transition between modes can occur automatically or the switcher can be placed in forced PPWM mode by I<sup>2</sup>C programming (PPWMVSEL0 / PPWMVSEL1 bits of COMMAND register).

#### PPWM (Pseudo Pulse Width Modulation) Operating Mode

In medium and high load conditions, NCP6356B operates in PPWM mode to regulate the desired output voltage. In this mode, the inductor current is in CCM (Continuous Conduction Mode) and the ACOT guaranties a pseudo-fixed frequency with 10% accuracy. The internal N-MOSFET switch operates as a synchronous rectifier and is driven complementary to the P-MOSFET switch.

#### PFM (Pulse Frequency Modulation) Operating Mode

In order to save power and improve efficiency at low loads, the NCP6356B operates in PFM mode as the inductor current drops into DCM (Discontinuous Conduction Mode). The upper FET on–time is kept constant and the switching frequency becomes proportional to the loading current. As it does in PPWM mode, the internal N–MOSFET operates as a synchronous rectifier after each P–MOSFET on–pulse until there is no longer current in the coil.

When the load increases and the current in the inductor become continuous again, the controller automatically turns back to PPWM mode.

#### Forced PPWM

The NCP6356B can be programmed to only use PPWM and the transition to PFM can be disabled if so desired, thanks to the PPWMVSEL0 or PPWMVSEL1 I<sup>2</sup>C bits (COMMAND register).

#### **Output Stage**

NCP6356B is a 3.5 A to 5.0 A output current capable DC to DC converter with both high side and low side (synchronous) switches integrated.

#### **Inductor Peak Current Limitation / Short Protection**

During normal operation, peak current limitation monitors and limits the inductor current by checking the current in the P–MOSFET switch. When this current exceeds the Ipeak threshold, the P–MOSFET is immediately opened.

To protect again excessive load or short circuit, the number of consecutive Ipeak is counted. When the counter reaches 16, the DCDC is powered down during about 2 ms and the ISHORT interrupt is flagged. It will re–start following the REARM bit in the LIMCONF register:

- If REARM = 0, then NCP6356B does not re-start automatically, an EN pin toggle is required.
- If REARM = 1, NCP6356B re-starts automatically after the 2 ms with register values set prior the fault condition.

This current limitation is particularly useful to protect the inductor. The peak current can be set by writing IPEAK[1..0] bits in the LIMCONF register.

**Table 1. IPEAK VALUES** 

| IPEAK[10] | Inductor Peak Current (A)    |
|-----------|------------------------------|
| 00        | 5.2 – for 3.5 output current |
| 01        | 5.8 – for 4.0 output current |
| 10        | 6.2 – for 4.5 output current |
| 11        | 6.8 – for 5.0 output current |

#### **Output Voltage**

The output voltage is set internally by an integrated resistor bridge and no extra components are needed to set the output voltage. Writing in the VoutVSEL0[6..0] bits of the PROGVSEL0 register or VoutVSEL1[6..0] bits of the PROGVSEL1 register will change the output voltage. The output voltage level can be programmed by 6.26 mV steps between 0.6 V to 1.39375 V. The VSEL pin and VSELGT bit will determine which register between PROGVSEL0 and PROGVSEL1 will set the output voltage.

- If VSELGT = 1 AND VSEL=0 → Output voltage is set by VoutVSEL0[6..0] bits (PROGVSEL0 register)
- Else → Output voltage is set by VoutVSEL1[6..0] bits (PROGVSEL1 register)

#### **Under Voltage Lock Out (UVLO)**

The NCP6356B core does not operate for voltages below the Under Voltage Lock Out (UVLO) level. Below the UVLO threshold, all internal circuitry (both analog and digital) is held in reset. The NCP6356B operation is guaranteed down to UVLO as the battery voltage is dropping off. To avoid erratic on / off behavior, a maximum 200 mV hysteresis is implemented. Restart is guaranteed at 2.7 V when the VBAT voltage is recovering or rising.

#### **Thermal Management**

#### Thermal Shut Down (TSD)

The thermal capability of the NCP6356B can be exceeded due to the step down converter output stage power level. A thermal protection circuitry with associated interrupt is therefore implemented to prevent the IC from damage. This protection circuitry is only activated when the core is in active mode (output voltage is turned on). During thermal shut down, output voltage is turned off. During thermal shut down, output voltage is turned off.

During thermal shutdown, the output voltage is turned off. When the NCP6356B returns from thermal shutdown, it can re–start in 2 different configurations depending on the REARM bit in the LIMCONF register (refer to the register description section):

If REARM = 0, the NCP6356B does not re-start after TSD. To restart, an EN pin toggle is required. If REARM = 1, the NCP6356B re-starts with register values set prior to thermal shutdown.

The thermal shut down threshold is set at 150°C (typical) and a 30°C hysteresis is implemented in order to avoid erratic on / off behavior. After a typical 150°C thermal shut down, the NCP6356B will resume to normal operation when the die temperature cools to 120°C.

#### Thermal Warnings

In addition to the TSD, the die temperature monitoring circuitry includes a thermal warning and thermal pre-warning sensor and interrupts. These sensors can inform the processor that the NCP6356B is close to its thermal shutdown and preventive measures to cool down die temperature can be taken by software.

The Warning threshold is set by hardware to 135°C typical. The Pre–Warning threshold is set by default to 105°C but it can be changed by setting the TPWTH[1..0] bits in the LIMCONF register.

#### **Active Output Discharge**

To make sure that no residual voltage remains in the power supply rail when disabled, an active discharge path can ground the NCP6356B output voltage. For maximum flexibility, this feature can be easily disabled or enabled with the DISCHG bit in the PGOOD register. By default the discharge path is enabled and is activated during the first 100 µs after battery insertion.

#### **Enabling**

The EN pin controls the NCP6356B start up. EN pin Low to High transition starts the power up sequencer. If EN is low, the DC to DC converter is turned off and device enters:

- Sleep Mode if Sleep\_Mode I<sup>2</sup>C bit is high or VSEL is high.
- Off Mode if Sleep Mode I<sup>2</sup>C bit and VSEL are low.

When EN pin is set to a high level, the DC to DC converter can be enabled / disabled by writing the ENVSEL0 or ENVSEL1 bit of the PROGVSEL0 and PROGVSEL1 registers:

- Enx I<sup>2</sup>C bit is high, the DC to DC converter is activated.
- Enx I<sup>2</sup>C is low, the DC to DC converter is turned off and the device enters in Sleep Mode.

A built in pull down resistor disables the device when this pin is left unconnected or not driven. EN pin activity does not generate any digital reset.

#### Power Up Sequence (PUS)

In order to power up the circuit, the input voltage AVIN has to rise above the VUVLO threshold. This triggers the internal core circuitry power up which is the "Wake Up Time" (including "Bias Time").

This delay is internal and cannot be bypassed. EN pin transition within this delay corresponds to the "Initial power up sequence" (IPUS):

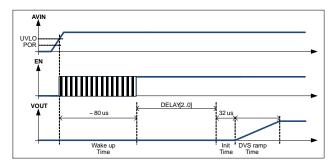



Figure 33. Initial Power Up Sequence

In addition a user programmable delay will also take place between the Wake Up Time and the Init time: The DELAY[2..0] bits of the TIME register will set this user programmable delay with a 2 ms resolution. With default delay of 0 ms, the NCP6356B IPUS takes roughly  $100 \mu s$ , and the DC to DC converter output voltage will be ready within  $150 \mu s$ .

The power up output voltage is defined by the VSEL state. NOTE: During the Wake Up time, the I<sup>2</sup>C interface is not active. Any I<sup>2</sup>C request to the IC during this time period will result in a NACK reply.

#### Normal, Quick and Fast Power Up Sequence

The previous description applies only when the EN transitions during the internal core circuitry power up (Wake up and calibration time). Otherwise 3 different cases are possible:

- Enabling the part by setting the EN pin from Off Mode will result in "Normal power up sequence" (NPUS, with DELAY;[2..0]).
- Enabling the part by setting the EN pin from Sleep Mode will result in "Quick power up sequence" (QPUS, with DELAY;[2..0]).
- Enabling the DC to DC converter, whereas EN is already high, either by setting the ENVSEL0 or ENVSEL1 bits or by VSEL pin transition will results in

"Fast power up sequence" (FPUS, without DELAY[2..0]).

Sleep mode is when VSEL is high and EN low, or when Sleep\_Mode I<sup>2</sup>C bit is set and EN is low, or finally when DC to DC converter is off and EN high.

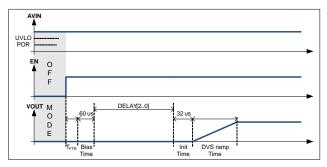



Figure 34. Normal Power Up Sequence

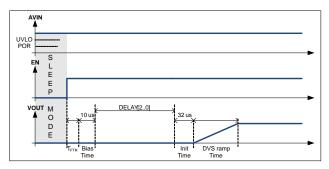



Figure 35. Quick Power Up Sequence

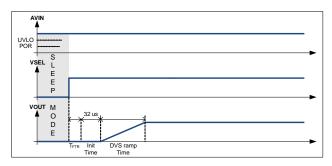



Figure 36. Fast Power Up Sequence

In addition the delay set in DELAY[2..0] bits in TIME register will apply only for the EN pins turn ON sequence (NPUS and QPUS).

The power up output voltage is defined by VSEL state.

#### DC to DC Converter Shut Down

When shutting down the device, no shut down sequence is required. The output voltage is disabled and, depending on the DISCHG bit state of the PGOOD register, the output may be discharged.

DC to DC converter shutdown is initiated by either grounding the EN pin (Hardware Shutdown) or, depending on the VSEL internal signal level, by clearing the ENVSEL0 or ENVSEL1 bits (Software shutdown) in the PROGVSEL0 or PROGVSEL1 registers.

In hardware shutdown (EN = 0), the internal core is still active and  $I^2C$  accessible.

The internal core of the NCP6356B shuts down when AVIN falls below UVLO

#### **Dynamic Voltage Scaling (DVS)**

The NCP6356B supports dynamic voltage scaling (DVS) allowing the output voltage to be reprogrammed via I<sup>2</sup>C commands and provides the different voltages required by the processor. The change between set points is managed in a smooth fashion without disturbing the operation of the processor.

When programming a higher voltage, the output raises with controlled dV/dt defined by DVS[1..0] bits in the TIME register. When programming a lower voltage the output voltage will decrease accordingly. The DVS step is fixed and the speed is programmable.

The DVS sequence is automatically initiated by changing the output voltage settings. There are two ways to change these settings:

- Directly change the active setting register value (VoutVSEL0[6..0] of the PROGVSEL0 register or VoutVSEL1[6..0] of the PROGVSEL1 register) via an I<sup>2</sup>C command
- Change the VSEL internal signal level by toggling the VSEL pin.

The second method eliminates the I<sup>2</sup>C latency and is therefore faster.

The DVS transition mode can be changed with the DVSMODE bit in the COMMAND register:

• In forced PPWM mode when accurate output voltage control is needed. Rise and fall time are controlled with the DVS[1..0] bits.

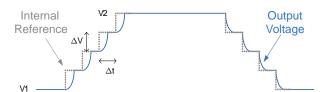



Figure 37. DVS in Forced PPWM Mode Diagram

• In Auto mode when the output voltage must not be discharged. Rise time is controlled by the DVS[1..0], and fall time depends on the load and cannot be faster than the DVS[1..0] settings.

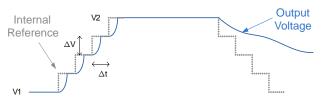



Figure 38. DVS in Auto Mode Diagram

#### **Digital IO Settings**

#### **VSEL Pin**

By changing the VSEL pin levels, the user has a latency free way to change the NCP6356B configuration: the operating mode, the output voltage as well as the enable (see Table 2).

**Table 2. VSEL PIN PARAMETERS** 

| Parameter VSEL       | REGISTER                | REGISTER                |
|----------------------|-------------------------|-------------------------|
| Pin Can Set          | VSEL = LOW              | VSEL = HIGH             |
| ENABLE               | ENVSEL0<br>PROGVSEL0[7] | ENVSEL1<br>PROGVSEL1[7] |
| VOUT                 | VoutVSEL0[60]           | VoutVSEL1[60]           |
| OPERATING MODE       | PWMVSEL0                | PWMVSEL1                |
| (Auto / PPWM Forced) | COMMAND[7]              | COMMAND[6]              |

VSEL pin action can be masked by writing 0 to the VSELGT bit in the COMMAND register. In that case the I<sup>2</sup>C bit corresponding to VSEL high will be taken into account.

#### **EN Pin**

The EN pin can be gated by writing the ENVSEL0 or ENVSEL1 bits of the PROGVSEL0 and PROGVSEL1 registers, depending on which register is activated by the VSEL internal signal.

### Power Good Pin (Optional)

To indicate the output voltage level is established, a power good signal is available.

The power good signal is low when the DC to DC converter is off. Once the output voltage reaches 95% of the expected output level, the power good logic signal becomes high and the open drain output becomes high impedance.

During a positive DVS sequence when the target voltage is higher than the initial voltage, the Power Good logic signal will be set low during the output voltage ramping and will transition to high once the output voltage reaches 95% of the target voltage. When the target voltage is lower than the initial voltage, the Power Good pin will remain at a high level during the transition.

The Power Good signal during normal operation can be disabled by clearing the PGDCDC bit in the PGOOD register.

The Power Good operation during DVS can be controlled by setting / clearing the PGDVS bit in the PGOOD register.

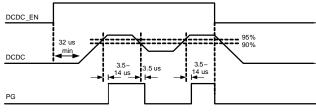



Figure 39. Power Good Signal

#### Power Good Delay

In order to generate a Reset signal, a delay can be programmed between when the output voltage gets 95% of

its final value and when the Power Good pin is released to a high level.

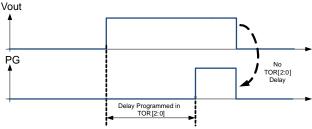



Figure 40. Power Good Operation

#### Interrupt Pin (Optional)

The interrupt controller continuously monitors internal interrupt sources, generating an interrupt signal when a system status change is detected (dual edge monitoring).

**Table 3. INTERRUPT SOURCES** 

| Interrupt Name | Description                                   |  |  |  |  |
|----------------|-----------------------------------------------|--|--|--|--|
| TSD            | Thermal Shut Down                             |  |  |  |  |
| TWARN          | Thermal Warning                               |  |  |  |  |
| TPREW          | Thermal Pre Warning                           |  |  |  |  |
| UVLO           | Under Voltage Lock Out                        |  |  |  |  |
| IDCDC          | DC to DC converter Current Over / below limit |  |  |  |  |
| ISHORT         | DC to DC converter Short–Circuit Protection   |  |  |  |  |
| PG             | Power Good                                    |  |  |  |  |

Individual bits generating interrupts will be set to 1 in the INT\_ACK register (I<sup>2</sup>C read only registers), indicating the interrupt source. INT\_ACK register is automatically reset by an I<sup>2</sup>C read. The INT\_SEN register (read only register) contains real time indicators of interrupt sources.

All interrupt sources can be masked by writing in register INT\_MSK. Masked sources will never generate an interrupt request on the INTB pin.

The INTB pin is an open drain output. A non-masked interrupt request will result in the INTB pin being driven low.

When the host reads the INT\_ACK registers the INTB pin is released to high impedance and the interrupt register INT ACK is cleared.

Figure 41 is an example of an UVLO event of the INTB pin with INT\_SEN/INT\_MSK/INT\_ACK and an I<sup>2</sup>C read access behavior.

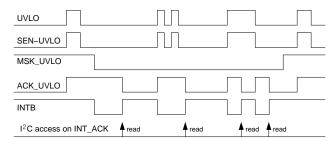



Figure 41. Interrupt Operation Example

# Configurations

Default output voltages, enables, DCDC modes, current limit and other parameters can be factory programmed upon request. Below are the pre-defined default configurations:

**Table 4. NCP6356B CONFIGURATION** 

| Configuration                                                                                                      | 5.0 A<br>NCP6356B           | 4.0 A<br>NCP6356BS          | 4.0 A<br>NCP6356BSN         |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| Default I <sup>2</sup> C address PID product identification RID revision identification FID feature identification | 0x14<br>19h<br>Metal<br>00h | 0x1C<br>19h<br>Metal<br>08h | 0x1C<br>19h<br>Metal<br>09h |
| Default VOUT - VSEL=1                                                                                              | 1.15 V                      | 0.95 V                      | 1.20 V                      |
| Default VOUT - VSEL=0                                                                                              | 1.15 V                      | 0.95 V                      | 1.20 V                      |
| Default Enable – VSEL=1                                                                                            | ON                          | ON                          | ON                          |
| Default Enable – VSEL=0                                                                                            | ON                          | ON                          | ON                          |
| Default MODE – VSEL=1                                                                                              | Forced PWM                  | Auto mode                   | Auto mode                   |
| Default MODE – VSEL=0                                                                                              | Auto mode                   | Auto mode                   | Auto mode                   |
| Default IPEAK                                                                                                      | 6.8 A                       | 5.8 A                       | 5.8 A                       |
| OPN                                                                                                                | NCP6356BFCCT1G              | NCP6356BSFCCT1G             | NCP6356BSNFCCT1G            |
| Marking                                                                                                            | 6356B                       | 6356BS                      | 6356BN                      |

#### I<sup>2</sup>C Compatible Interface

The NCP6356B can support a subset of the I<sup>2</sup>C protocol as detailed below.

#### I<sup>2</sup>C Communication Description

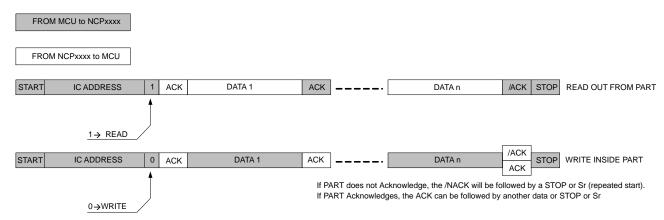



Figure 42. General Protocol Description

The first byte transmitted is the Chip address (with the LSB bit set to 1 for a read operation, or set to 0 for a Write operation). The following data will be:

- During a Write operation, the register address (@REG) is written in followed by the data. The writing process is auto-incremental, so the first data will be written in @REG, the contents of @REG are incremented and the next data byte is placed in the location pointed to by @REG + 1 ..., etc.
- During a Read operation, the NCP6356B will output the data from the last register that has been accessed by the last write operation. Like the writing process, the reading process is auto-incremental.

#### **Read Sequence**

The Master will first make a "Pseudo Write" transaction with no data to set the internal address register. Then, a stop then start or a Repeated Start will initiate the read transaction from the register address the initial write transaction has pointed to:

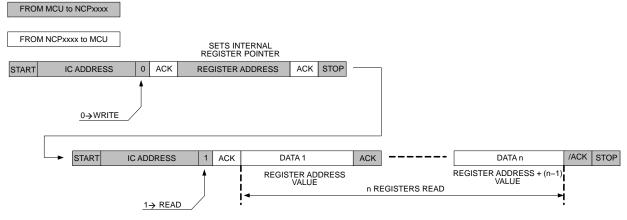



Figure 43. Read Sequence

The first WRITE sequence will set the internal pointer to the register that is selected. Then the read transaction will start at the address the write transaction has initiated.

#### **Write Sequence**

Write operation will be achieved by only one transaction. After chip address, the REG address has to be set, then following data will be the data we want to write in REG, REG + 1, REG + 2, ..., REG + n.

### Write n Registers:

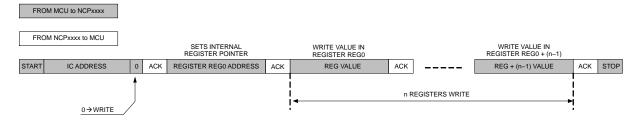



Figure 44. Write Sequence

#### Write then Read Sequence

#### With Stop Then Start

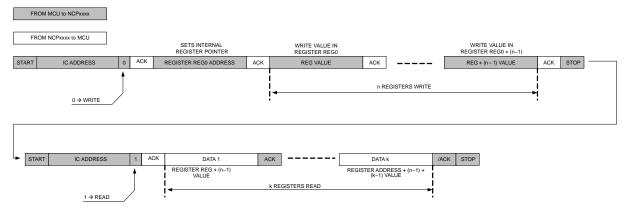



Figure 45. Write Followed by Read Transaction

#### I<sup>2</sup>C Address

The NCP6356B has 8 available  $I^2C$  addresses selectable by factory settings (ADD0 to ADD7). Different address settings can be generated upon request to ON Semiconductor. See Table 4 (NCP6356B Configuration) for the default  $I^2C$  address.

Table 5. I<sup>2</sup>C ADDRESS

| I <sup>2</sup> C Address | Hex              | A7 | A6 | A5 | A4   | А3 | A2 | A1 | A0  |
|--------------------------|------------------|----|----|----|------|----|----|----|-----|
| ADD0                     | W 0x20<br>R 0x21 | 0  | 0  | 1  | 0    | 0  | 0  | 0  | R/W |
|                          | Add              |    | •  | •  | 0x10 | •  | •  | •  | -   |
| ADD1                     | W 0x28<br>R 0x29 | 0  | 0  | 1  | 0    | 1  | 0  | 0  | R/W |
|                          | Add              |    | •  | •  | 0x14 | •  | •  | •  | -   |
| ADD2                     | W 0x30<br>R 0x31 | 0  | 0  | 1  | 1    | 0  | 0  | 0  | R/W |
|                          | Add              |    |    |    | 0x18 |    |    |    | -   |
| ADD3                     | W 0x38<br>R 0x39 | 0  | 0  | 1  | 1    | 1  | 0  | 0  | R/W |
|                          | Add              |    | •  | •  | 0x1C | •  | •  | •  | -   |
| ADD4                     | W 0xC0<br>R 0xC1 | 1  | 1  | 0  | 0    | 0  | 0  | 0  | R/W |
|                          | Add              |    |    |    | 0x60 | -  |    |    | _   |
| ADD5                     | W 0xC8<br>R 0xC9 | 1  | 1  | 0  | 0    | 1  | 0  | 0  | R/W |
|                          | Add              |    | •  | •  | 0x64 | •  | •  | •  | -   |
| ADD6                     | W 0xD0<br>R 0xD1 | 1  | 1  | 0  | 1    | 0  | 0  | 0  | R/W |
|                          | Add              |    | •  | •  | 0x68 | •  | •  | •  | -   |
| ADD7                     | W 0xD8<br>R 0xD9 | 1  | 1  | 0  | 1    | 1  | 0  | 0  | R/W |
|                          | Add              |    | -  | -  | 0x6C | -  | -  | -  | -   |

### **Register Map**

The tables below describe the I<sup>2</sup>C registers.

Registers / bits Operations:

R Read only register
RC Read then Clear
RW Read and Write register

Reserved Address is reserved and register / bit is not physically designed Spare Address is reserved and register / bit is physically designed

### Table 6. I<sup>2</sup>C REGISTERS MAP CONFIGURATION (NCP6356B)

| Add.       | Register Name | Туре | Def.  | Function                                                    |
|------------|---------------|------|-------|-------------------------------------------------------------|
| 00h        | INT_ACK       | RC   | 00h   | Interrupt register                                          |
| 01h        | INT_SEN       | R    | 00h   | Sense register (real time status)                           |
| 02h        | INT_MSK       | RW   | FFh   | Mask register to enable or disable interrupt sources (trim) |
| 03h        | PID           | R    | 19h   | Product Identification                                      |
| 04h        | RID           | R    | Metal | Revision Identification                                     |
| 05h        | FID           | R    | 00h   | Features Identification (trim)                              |
| 06h to 0Fh | -             | -    | -     | Reserved for future use                                     |
| 10h        | PROGVSEL1     | RW   | D8h   | Output voltage settings and EN for VSEL pin = High (trim)   |
| 11h        | PROGVSEL0     | RW   | D8h   | Output voltage settings and EN for VSEL pin = Low (trim)    |
| 12h        | PGOOD         | RW   | 10h   | Power good and active discharge settings (trim)             |
| 13h        | TIME          | RW   | 09h   | Enabling and DVS timings (trim)                             |
| 14h        | COMMAND       | RW   | 43h   | Enabling and Operating mode Command register (trim)         |
| 15h        | -             | -    | -     | Reserved for future use                                     |
| 16h        | LIMCONF       | RW   | E3h   | Reset and limit configuration register (trim)               |
| 17h to 1Fh | -             | -    | -     | Reserved for future use                                     |
| 20h to FFh | -             | -    | -     | Reserved. Test Registers                                    |

### Table 7. I<sup>2</sup>C REGISTERS MAP CONFIGURATION (NCP6356BS)

| Add.       | Register Name | Type | Def.  | Function                                                    |
|------------|---------------|------|-------|-------------------------------------------------------------|
| 00h        | INT_ACK       | RC   | 00h   | Interrupt register                                          |
| 01h        | INT_SEN       | R    | 00h   | Sense register (real time status)                           |
| 02h        | INT_MSK       | RW   | FFh   | Mask register to enable or disable interrupt sources (trim) |
| 03h        | PID           | R    | 19h   | Product Identification                                      |
| 04h        | RID           | R    | Metal | Revision Identification                                     |
| 05h        | FID           | R    | 08h   | Features Identification (trim)                              |
| 06h to 0Fh | -             | -    | -     | Reserved for future use                                     |
| 10h        | PROGVSEL1     | RW   | B8h   | Output voltage settings and EN for VSEL pin = High (trim)   |
| 11h        | PROGVSEL0     | RW   | B8h   | Output voltage settings and EN for VSEL pin = Low (trim)    |
| 12h        | PGOOD         | RW   | 10h   | Power good and active discharge settings (trim)             |
| 13h        | TIME          | RW   | 01h   | Enabling and DVS timings (trim)                             |
| 14h        | COMMAND       | RW   | 03h   | Enabling and Operating mode Command register (trim)         |
| 15h        | -             | -    | -     | Reserved for future use                                     |
| 16h        | LIMCONF       | RW   | 63h   | Reset and limit configuration register (trim)               |
| 17h to 1Fh |               | _    | _     | Reserved for future use                                     |
| 20h to FFh | -             | _    | _     | Reserved. Test Registers                                    |

Table 8. I<sup>2</sup>C REGISTERS MAP CONFIGURATION (NCP6356BSN)

| Add.       | Register Name | Type | Def.  | Function                                                    |
|------------|---------------|------|-------|-------------------------------------------------------------|
| 00h        | INT_ACK       | RC   | 00h   | Interrupt register                                          |
| 01h        | INT_SEN       | R    | 00h   | Sense register (real time status)                           |
| 02h        | INT_MSK       | RW   | FFh   | Mask register to enable or disable interrupt sources (trim) |
| 03h        | PID           | R    | 19h   | Product Identification                                      |
| 04h        | RID           | R    | Metal | Revision Identification                                     |
| 05h        | FID           | R    | 09h   | Features Identification (trim)                              |
| 06h to 0Fh | -             | -    | _     | Reserved for future use                                     |
| 10h        | PROGVSEL1     | RW   | E0h   | Output voltage settings and EN for VSEL pin = High (trim)   |
| 11h        | PROGVSEL0     | RW   | E0h   | Output voltage settings and EN for VSEL pin = Low (trim)    |
| 12h        | PGOOD         | RW   | 10h   | Power good and active discharge settings (trim)             |
| 13h        | TIME          | RW   | 01h   | Enabling and DVS timings (trim)                             |
| 14h        | COMMAND       | RW   | 03h   | Enabling and Operating mode Command register (trim)         |
| 15h        | -             | -    | _     | Reserved for future use                                     |
| 16h        | LIMCONF       | RW   | 63h   | Reset and limit configuration register (trim)               |
| 17h to 1Fh | -             | -    | -     | Reserved for future use                                     |
| 20h to FFh | -             | _    | _     | Reserved. Test Registers                                    |

## **Registers Description**

### Table 9. INTERRUPT ACKNOWLEDGE REGISTER

| Name: INTA   | СК           |                                                                                    |                                                    |           | Address: 00h             |          |           |        |  |  |
|--------------|--------------|------------------------------------------------------------------------------------|----------------------------------------------------|-----------|--------------------------|----------|-----------|--------|--|--|
| Type: RC     |              |                                                                                    |                                                    |           | Default: 00000000b (00h) |          |           |        |  |  |
| Trigger: Dua | al Edge [D7l | D0]                                                                                |                                                    |           |                          |          |           |        |  |  |
| D7           | D6           |                                                                                    | D5 D4 D3 D2 D1 D0                                  |           |                          |          |           |        |  |  |
| ACK_TSD      | ACK_TWA      | RN                                                                                 | ACK_TPREW                                          | Spare = 0 | ACK_ISHORT               | ACK_UVLO | ACK_IDCDC | ACK_PG |  |  |
| Bi           | t            |                                                                                    |                                                    |           | Bit Descrip              | tion     |           |        |  |  |
| ACK_         | _PG          | 0: CI                                                                              | er Good Sense Act<br>eared<br>CDC Power Good       | · ·       |                          |          |           |        |  |  |
| ACK_IDCDC    |              | 0: CI                                                                              | C Over Current Se<br>eared<br>CDC Over Current     | · ·       | ement                    |          |           |        |  |  |
| ACK_l        | JVLO         | 0: CI                                                                              | er Voltage Sense A<br>eared<br>nder Voltage Event  | •         | t                        |          |           |        |  |  |
| ACK_IS       | HORT         | 0: CI                                                                              | C Short–Circuit Pr<br>eared<br>CDC Short circuit p |           | ŭ                        |          |           |        |  |  |
| ACK_TI       | PREW         | 0: CI                                                                              | mal Pre Warning S<br>eared<br>nermal Pre Warning   |           | gement                   |          |           |        |  |  |
| ACK_T\       | WARN         | Thermal Warning Sense Acknowledgement 0: Cleared 1: Thermal Warning Event detected |                                                    |           |                          |          |           |        |  |  |
| ACK_         | TSD          | 0: CI                                                                              | mal Shutdown Ser<br>eared<br>ermal Shutdown E      | · ·       | ment                     |          |           |        |  |  |

### Table 10. INTERRUPT SENSE REGISTER

| Name: INTS   | EN                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Address: 01h             |          |           |        |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|----------|-----------|--------|--|--|
| Type: R      |                                                                                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Default: 00000000b (00h) |          |           |        |  |  |
| Trigger: N/A | Trigger: N/A                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |          |           |        |  |  |
| D7           | D6                                                                                                                                   |        | D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D4               | D3                       | D2       | D1        | D0     |  |  |
| SEN_TSD      | SEN_TWA                                                                                                                              | RN     | SEN_TPREW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spare = 0        | SEN_ISHORT               | SEN_UVLO | SEN_IDCDC | SEN_PG |  |  |
| Bi           | t                                                                                                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Bit Descrip              | tion     |           |        |  |  |
| SEN_         | _PG                                                                                                                                  | 0: D0  | er Good Sense<br>CDC Output Voltag<br>CDC Output Voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | range                    |          |           |        |  |  |
| SEN_IDCDC    |                                                                                                                                      | 0: D0  | C over current sen<br>CDC output current<br>CDC output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t is below limit |                          |          |           |        |  |  |
| SEN_U        | JVLO                                                                                                                                 | 0: Inp | er Voltage Sense<br>out Voltage higher<br>out Voltage lower t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                          |          |           |        |  |  |
| SEN_IS       | HORT                                                                                                                                 | 0: Sh  | C Short-Circuit Proort-Circuit detected ort-Circuit detected ort-Circuit not detected ort-Circui | ed not detected  |                          |          |           |        |  |  |
| SEN_T        | PREW                                                                                                                                 | 0: Ju  | mal Pre Warning S<br>nction temperature<br>nction temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | below thermal    |                          |          |           |        |  |  |
| SEN_T        | _TWARN Thermal Warning Sense  0: Junction temperature below thermal warning limit 1: Junction temperature over thermal warning limit |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |          |           |        |  |  |
| SEN_         | TSD                                                                                                                                  | 0: Ju  | mal Shutdown Ser<br>nction temperature<br>nction temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | below thermal    |                          |          |           |        |  |  |

#### **Table 11. INTERRUPT MASK REGISTER**

| Name: INTM   | SK      |                                                                                      |                                                                 |                 | Address: 02h              |     |    |    |  |  |  |
|--------------|---------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|---------------------------|-----|----|----|--|--|--|
| Type: RW     |         |                                                                                      |                                                                 |                 | Default: See Register map |     |    |    |  |  |  |
| Trigger: N/A |         |                                                                                      |                                                                 |                 |                           |     |    |    |  |  |  |
| D7           | D6      |                                                                                      | D5                                                              | D4              | D3                        | D2  | D1 | D0 |  |  |  |
| MSK_TSD      | MSK_TWA | ιRN                                                                                  | RN MSK_TPREW Spare = 1 MSK_ISHORT MSK_UVLO MSK_IDCDC MAS        |                 |                           |     |    |    |  |  |  |
| Bit          | t       |                                                                                      |                                                                 |                 | Bit Descript              | ion |    |    |  |  |  |
| MSK_         | PG      | 0: Int                                                                               | er Good interrupt so<br>errupt is Enabled<br>errupt is Masked   | urce mask       |                           |     |    |    |  |  |  |
| MSK_I        | OCDC    | 0: Int                                                                               | C over current interrerrupt is Enabled errupt is Masked         | upt source mas  | sk                        |     |    |    |  |  |  |
| MSK_L        | JVLO    | 0: Int                                                                               | er Voltage interrupt s<br>errupt is Enabled<br>errupt is Masked | ource mask      |                           |     |    |    |  |  |  |
| MSK_IS       | HORT    | 0: Int                                                                               | C Short-Circuit Proterrupt is Enabled errupt is Masked          | ection source r | nask                      |     |    |    |  |  |  |
| MSK_TF       | PREW    | 0: Int                                                                               | mal Pre Warning inte<br>errupt is Enabled<br>errupt is Masked   | errupt source m | nask                      |     |    |    |  |  |  |
| MSK_T\       | WARN    | Thermal Warning interrupt source mask 0: Interrupt is Enabled 1: Interrupt is Masked |                                                                 |                 |                           |     |    |    |  |  |  |
| MSK_         | TSD     | 0: Int                                                                               | mal Shutdown interr<br>errupt is Enabled<br>errupt is Masked    | upt source mas  | sk                        |     |    |    |  |  |  |

#### **Table 12. PRODUCT ID REGISTER**

| Name: PID    |       |       |                          | Address: 03h |       |       |  |  |
|--------------|-------|-------|--------------------------|--------------|-------|-------|--|--|
| Type: R      |       |       | Default: 00011001b (19h) |              |       |       |  |  |
| Trigger: N/A |       |       |                          | Reset on N/A |       |       |  |  |
| D7           | D6    | D4    | D3                       | D2           | D1    | D0    |  |  |
| PID_7        | PID_6 | PID_5 | PID_3                    | PID_2        | PID_1 | PID_0 |  |  |

#### Table 13. REVISION ID REGISTER

| Name: RID    |       |                                                                          | Address: 04  | Address: 04h |       |       |       |  |
|--------------|-------|--------------------------------------------------------------------------|--------------|--------------|-------|-------|-------|--|
| Type: R      |       |                                                                          | Default: Met | al           |       |       |       |  |
| Trigger: N/A |       |                                                                          |              |              |       |       |       |  |
| D7           | D6    | D5                                                                       | D4           | D3           | D2    | D1    | D0    |  |
| RID_7        | RID_6 | RID_5                                                                    | RID_4        | RID_3        | RID_2 | RID_1 | RID_0 |  |
| Bit          |       |                                                                          |              | Bit Descri   | ption |       |       |  |
| RID[7.       | 0]    | Revision Identification<br>0000000X: Prototype S<br>00000010: Production | ilicon       |              |       |       |       |  |

#### **Table 14. FEATURE ID REGISTER**

| Name: FID    |       |                                                            |       | Address: 05h   |              |       |       |  |  |
|--------------|-------|------------------------------------------------------------|-------|----------------|--------------|-------|-------|--|--|
| Type: R      |       |                                                            |       | Default: See R | legister map |       |       |  |  |
| Trigger: N/A |       |                                                            |       |                |              |       |       |  |  |
| D7           | D6    | D6 D5 D4                                                   |       |                | D2           | D1    | D0    |  |  |
| Spare        | Spare | Spare                                                      | Spare | FID_3          | FID_2        | FID_1 | FID_0 |  |  |
| Bit          |       | •                                                          | •     | Bit Descri     | ption        |       |       |  |  |
| FID[3.       | .0]   | Feature Identification See Table 4: NCP6356B Configuration |       |                |              |       |       |  |  |

### Table 15. DC TO DC VOLTAGE PROG (VSEL = 1) REGISTER

| Name: PROGVSEL | .1                                       |                                                                                                                                                                                                                                                 |                   | Address: 10h    |             |    |    |  |  |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------|----|----|--|--|
| Type: RW       |                                          |                                                                                                                                                                                                                                                 |                   | Default: See R  | egister map |    |    |  |  |
| Trigger: N/A   |                                          |                                                                                                                                                                                                                                                 |                   |                 |             |    |    |  |  |
| D7             | D6                                       | D5                                                                                                                                                                                                                                              | D4                | D3              | D2          | D1 | D0 |  |  |
| ENVSEL1        |                                          |                                                                                                                                                                                                                                                 | •                 | VoutVSEL1[6.    | 0]          | •  |    |  |  |
| Bit            |                                          |                                                                                                                                                                                                                                                 |                   | Bit Description | on          |    |    |  |  |
| VoutVSEL1[60]  | COMMAND                                  | Sets the DC to DC converter output voltage when VSEL pin = 1 and VSEL pin function is enabled in register COMMAND.D0, or when VSEL pin function is disabled in register COMMAND.D0 0000000b = 600 mV - 1111111b = 1393.75 mV (steps of 6.25 mV) |                   |                 |             |    |    |  |  |
| ENVSEL1        | EN Pin Gati<br>0: Disabled<br>1: Enabled | ng for VSEL inte                                                                                                                                                                                                                                | rnal signal = Hig | h               |             |    |    |  |  |

### Table 16. DC TO DC VOLTAGE PROG (VSEL = 0) REGISTER

| Name: PROGVSE         | L0                                      |    |    | Address: 11h                             |             |                     |          |  |  |
|-----------------------|-----------------------------------------|----|----|------------------------------------------|-------------|---------------------|----------|--|--|
| Type: RW Trigger: N/A |                                         |    |    | Default: See R                           | egister map |                     |          |  |  |
|                       |                                         |    |    |                                          |             |                     |          |  |  |
| D7                    | D6                                      | D5 | D4 | D3                                       | D2          | D1                  | D0       |  |  |
| ENVSEL0               |                                         |    |    | VoutVSEL0[60]                            |             | •                   |          |  |  |
| Bit                   |                                         |    |    | Bit Description                          |             |                     |          |  |  |
| VoutVSEL0[60]         | COMMAND.DO                              | )  |    | en VSEL pin = 0 ai<br>(steps of 6.25 mV) | •           | ction is enabled in | register |  |  |
| ENVSEL0               | EN Pin Gating to 0: Disabled 1: Enabled |    |    |                                          |             |                     |          |  |  |

#### Table 17. POWER GOOD REGISTER

| Name: PGOO   | D                                                                           |                         |        | Address: 1  | 2h           |       |        |  |  |  |
|--------------|-----------------------------------------------------------------------------|-------------------------|--------|-------------|--------------|-------|--------|--|--|--|
| Type: RW     |                                                                             |                         |        | Default: Se | e Register n | пар   |        |  |  |  |
| Trigger: N/A |                                                                             |                         |        |             |              |       |        |  |  |  |
| D7           | D6                                                                          | D5                      | D4     | D3          | D2           | D1    | D0     |  |  |  |
| Spare = 0    | Spare = 0                                                                   | Spare = 0               | DISCHG | TOR         | [10]         | PGDVS | PGDCDC |  |  |  |
| Bit          |                                                                             | •                       | Bit I  | Description |              |       |        |  |  |  |
| PGDCDC       | Power Good Enablin<br>0 = Disabled<br>1 = Enabled                           |                         |        |             |              |       |        |  |  |  |
| PGDVS        | Power Good Active (<br>0 = Disabled<br>1 = Enabled                          | On DVS                  |        |             |              |       |        |  |  |  |
| TOR[10]      | Time out Reset settir<br>00 = 0 ms<br>01 = 8 ms<br>10 = 32 ms<br>11 = 64 ms | 01 = 8 ms<br>10 = 32 ms |        |             |              |       |        |  |  |  |
| DISCHG       | Active discharge bit I<br>0 = Discharge path d<br>1 = Discharge path e      | lisabled                |        |             |              |       |        |  |  |  |

### **Table 18. TIMING REGISTER**

| Name: TIME                                                                                                                                |         |                                                                                                                      |         | Address: 13  | h            |       |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------|-------|----------|
| Type: RW                                                                                                                                  |         |                                                                                                                      |         | Default: See | Register map |       |          |
| Trigger: N/A                                                                                                                              |         |                                                                                                                      |         |              |              |       |          |
| D7                                                                                                                                        | D6      | D5                                                                                                                   | D4      | D3           | D2           | D1    | D0       |
|                                                                                                                                           | DELAY[2 | 20]                                                                                                                  | DVS     | [10]         | Spare = 0    | DBN_1 | Time[10] |
| Bit                                                                                                                                       |         |                                                                                                                      |         | Bit Des      | cription     |       |          |
| DBN_Time                                                                                                                                  | e[10]   | EN and VSEL debour<br>00 = No debounce<br>$01 = 1-2 \mu\text{s}$<br>$10 = 2-3 \mu\text{s}$<br>$11 = 3-4 \mu\text{s}$ | ce time |              |              |       |          |
| DVS Speed<br>00 = 6.25 mV step / 0.333 μs<br>01 = 6.25 mV step / 0.666 μs<br>10 = 6.25 mV step / 1.333 μs<br>11 = 6.25 mV step / 2.666 μs |         |                                                                                                                      |         |              |              |       |          |
| DELAY[2                                                                                                                                   | 20]     | Delay applied upon er<br>000b = 0 ms - 111b =                                                                        |         | 2 ms)        |              |       |          |

#### **Table 19. COMMAND REGISTER**

| Name: COMM   | AND    |                                                                         |                                        |                                     | Address: 14h              |           |       |        |  |  |
|--------------|--------|-------------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------|-----------|-------|--------|--|--|
| Type: RW     |        |                                                                         |                                        |                                     | Default: See Register map |           |       |        |  |  |
| Trigger: N/A |        |                                                                         |                                        |                                     |                           |           |       |        |  |  |
| D7           | D6     |                                                                         | D5 D4 D3 D2 D1                         |                                     |                           |           |       |        |  |  |
| PPWMVSEL0    | PPWMVS | SEL1                                                                    | DVSMODE                                | Sleep_Mode                          | Spare = 0                 | Spare = 0 | Spare | VSELGT |  |  |
| Bit          |        |                                                                         |                                        |                                     | Bit Desc                  | ription   |       |        |  |  |
| VSELG        | Т      | 0 = 0                                                                   | L Pin Gating<br>Disabled<br>Enabled    |                                     |                           |           |       |        |  |  |
| Sleep_Mo     | ode    | 0 = L                                                                   |                                        | n EN and VSEL I<br>sleep mode (wher |                           | ire low)  |       |        |  |  |
| DVSMO        | DE     | 0 = A                                                                   | transition mode<br>Auto<br>Forced PPWM | selection                           |                           |           |       |        |  |  |
| PPWMVSI      | EL1    | Operating mode for MODE internal signal = High 0 = Auto 1 = Forced PPWM |                                        |                                     |                           |           |       |        |  |  |
| PPWMVSI      | EL0    | 0 = A                                                                   |                                        | IODE internal sig                   | nal = Low                 |           |       |        |  |  |

#### **Table 20. LIMITS CONFIGURATION REGISTER**

| Name: LIMCONF                                                     |    |                                                                                                                                                                                                                                                              | Adress: 16h                                     |    |          |           |       |  |
|-------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----|----------|-----------|-------|--|
| Type: RW                                                          |    |                                                                                                                                                                                                                                                              | Default: See Register map                       |    |          |           |       |  |
| Trigger: N/A                                                      |    |                                                                                                                                                                                                                                                              |                                                 |    |          |           |       |  |
| D7                                                                | D6 | D5                                                                                                                                                                                                                                                           | D4                                              | D3 | D2       | D1        | D0    |  |
| IPEAK[10]                                                         |    | TPWT                                                                                                                                                                                                                                                         | TPWTH[10]                                       |    | FORCERST | RSTSTATUS | REARM |  |
| Bit                                                               |    | Bit Description                                                                                                                                                                                                                                              |                                                 |    |          |           |       |  |
| 1                                                                 |    | Rearming of device after TSD / ISHORT 0: No re–arming after TSD / ISHORT 1: Re–arming active after TSD / ISHORT with no reset of I <sup>2</sup> C registers: new power–up sequence is initiated with previously programmed I <sup>2</sup> C registers values |                                                 |    |          |           |       |  |
|                                                                   |    | Reset Indicator Bit 0: Must be written to 0 after register reset 1: Default (loaded after Registers reset)                                                                                                                                                   |                                                 |    |          |           |       |  |
| (                                                                 |    | Force Reset Bit 0: Default value. Self cleared to 0 1: Force reset of internal registers to default                                                                                                                                                          |                                                 |    |          |           |       |  |
| 00<br>01<br>10                                                    |    | Thermal pre–Warning threshold settings  00 = 83°C  01 = 94°C  10 = 105°C  11 = 116°C                                                                                                                                                                         |                                                 |    |          |           |       |  |
| 00 = 5.2 A (for 3.5<br>01 = 5.8 A (for 4.0<br>10 = 6.2 A (for 4.5 |    | nductor peak current<br>00 = 5.2 A (for 3.5 A<br>01 = 5.8 A (for 4.0 A<br>10 = 6.2 A (for 4.5 A<br>11 = 6.8 A (for 5.0 A)                                                                                                                                    | output current) output current) output current) |    |          |           |       |  |

#### APPLICATION INFORMATION

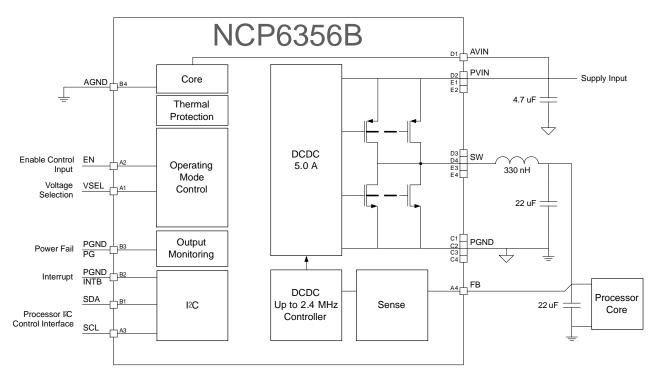



Figure 46. Typical Application Schematic

#### **Output Filter Considerations**

The output filter introduces a double pole in the system at a frequency of:

$$f_{LC} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$
 (eq. 1)

The NCP6356B internal compensation network is optimized for a typical output filter comprising a 330 nH inductor and 47  $\mu$ F capacitor as described in the basic application schematic in Figure 46.

#### **Voltage Sensing Considerations**

In order to regulate the power supply rail, the NCP6356B must sense its output voltage. The IC can support two sensing methods:

- Normal sensing: The FB pin should be connected to the output capacitor positive terminal (voltage to regulate).
- Remote sensing: The power supply rail sense should be made close to the system powered by the NCP6356B.
   The voltage to the system is more accurate, since the PCB line impedance voltage drop is within the regulation loop. In this case, we recommend connecting the FB pin to the system decoupling capacitor positive terminal.

# Components Selection Inductor Selection

The inductance of the inductor is chosen such that the peak–to–peak ripple current  $I_{L\_PP}$  is approximately 20% to 50% of the maximum output current  $I_{OUT\_MAX}$ . This provides the best trade–off between transient response and output ripple. The inductance corresponding to a given current ripple is:

$$L = \frac{\left(V_{\text{IN}} - V_{\text{OUT}}\right) \cdot V_{\text{OUT}}}{V_{\text{IN}} \cdot f_{\text{SW}} \cdot I_{\text{L PP}}}$$
 (eq. 2)

The selected inductor must have a saturation current rating higher than the maximum peak current which is calculated by:

$$I_{L\_MAX} = I_{OUT\_MAX} + \frac{I_{L\_PP}}{2}$$
 (eq. 3)

The inductor must also have a high enough current rating to avoid self-heating. A low DCR is therefore preferred. Refer to Table 21 for recommended inductors.

**Table 21. INDUCTOR SELECTION** 

| Supplier | Part #              | Value<br>(μH) | Size (mm)<br>(L x I x T) (mm) | Saturation<br>Current Max (A) | DCR Max at 25°C<br>(mΩ) |
|----------|---------------------|---------------|-------------------------------|-------------------------------|-------------------------|
| Cyntec   | PIFE20161B-R33MS-11 | 0.33          | 2.0 x 1.6 x 1.2               | 4.0                           | 33                      |
| Cyntec   | PIFE25201B-R33MS-11 | 0.33          | 2.5 x 2.0 x 1.2               | 5.2                           | 17                      |
| Cyntec   | PIFE32251B-R33MS-11 | 0.33          | 3.2 x 2.5 x 1.2               | 6.5                           | 14                      |
| TOKO     | DFE252012F-H-R33M   | 0.33          | 2.5 x 2.0 x 1.2               | 5.1                           | 13                      |
| TOKO     | DFE201612E-H-R33M   | 0.33          | 2.0 x 1.6 x 1.2               | 4.8                           | 21                      |
| TOKO     | FDSD0412-H-R33M     | 0.33          | 4.2 x 4.2 x 1.2               | 7.5                           | 19                      |
| TDK      | VLS252012HBX-R33M   | 0.33          | 2.5 x 2.0 x 1.2               | 5.3                           | 25                      |
| TDK      | SPM5030T-R35M       | 0.35          | 7.1 x 6.5 x 3.0               | 14.9                          | 4                       |

#### **Output Capacitor Selection**

The output capacitor selection is determined by output voltage ripple and load transient response requirement. For high transient load performance a high output capacitor value must be used. For a given peak—to—peak ripple current  $I_{L\_PP}$  in the inductor of the output filter, the output voltage ripple across the output capacitor is the sum of three components as shown below.

$$V_{OUT\_PP} \approx V_{OUT\_PP(C)} + V_{OUT\_PP(ESR)} + V_{OUT\_PP(ESL)}$$
, (eq. 4)

With:

$$V_{OUT\_PP(C)} = \frac{I_{L\_PP}}{8 \cdot C \cdot f_{SW}},$$
 (eq. 5)

$$V_{OUT\_PP(ESR)} = I_{L\_PP} \cdot ESR$$
 (eq. 6)

$$V_{OUT\_PP(ESL)} = \frac{ESL}{ESL + L} \cdot V_{IN}$$
 (eq. 7)

Where the peak-to-peak ripple current is given by

$$I_{L\_PP} = \frac{\left(V_{IN} - V_{OUT}\right) \cdot V_{OUT}}{V_{IN} \cdot f_{SW} \cdot L}$$
 (eq. 8)

In applications with all ceramic output capacitors, the main ripple component of the output ripple is  $V_{OUT\_PP(C)}$ . The minimum output capacitance can be calculated based on a given output ripple requirement  $V_{OUT\_PP}$  in PPWM operation mode.

$$C_{MIN} = \frac{I_{L\_PP}}{8 \cdot V_{OUT\_PP} \cdot f_{SW}}$$
 (eq. 9)

#### **Input Capacitor Selection**

One of the input capacitor selection requirements is the input voltage ripple. To minimize the input voltage ripple and get better decoupling at the input power supply rail, a ceramic capacitor is recommended due to low ESR and ESL. The minimum input capacitance with respect to the input ripple voltage  $V_{\rm IN\ PP}$  is

$$C_{\text{IN\_MIN}} = \frac{I_{\text{OUT\_MAX}} \cdot (D - D^2)}{V_{\text{IN PP}} \cdot f_{\text{SW}}}$$
 (eq. 10)

where

$$D = \frac{V_{OUT}}{V_{IN}}$$
 (eq. 11)

In addition, the input capacitor must be able to absorb the input current, which has a RMS value of

$$I_{\text{IN\_RMS}} = I_{\text{OUT\_MAX}} \cdot \sqrt{D - D^2}$$
 (eq. 12)

The input capacitor also must be sufficient to protect the device from over voltage spikes, and a 4.7  $\mu$ F capacitor or greater is required. The input capacitor should be located as close as possible to the IC. All PGND pins must be connected together to the ground terminal of the input cap which then must be connected to the ground plane. All PVIN pins must be connected together to the Vbat terminal of the input cap which then connects to the Vbat plane.

#### **Power Capability**

The NCP6356B's power capability is driven by the difference in temperature between the junction  $(T_J)$  and ambient  $(T_A)$ , the junction–to–ambient thermal resistance  $(R_{\theta JA})$ , and the on–chip power dissipation  $(P_{IC})$ .

The on–chip power dissipation  $P_{IC}$  can be determined as  $P_{IC}$  =  $P_T - P_L$  with the total power losses  $P_T$  being

$$P_T = V_{OUT} \times I_{OUT} \times \left(\frac{1}{\eta} - 1\right)$$
 (eq. 13)

where  $\eta$  is the efficiency and  $P_L$  the simplified inductor power losses  $P_L = I_{LOAD}{}^2\,x$  DCR.

Now the junction temperature  $T_J$  can easily be calculated as  $T_J = R_{\theta JA} \ x \ P_{IC} + T_A$ .

Please note that the  $T_{\text{J}}$  should stay within the recommended operating conditions.

The  $R_{\theta JA}$  is a function of the PCB layout (number of layers and copper and PCB size). For example, the NCP6356B mounted on the EVB has a  $R_{\theta JA}$  about 55°C/W.

#### **Layout Considerations**

#### **Electrical Rules**

Good electrical layout is key to proper operation, high efficiency, and noise reduction. Electrical layout guidelines are:

- Use wide and short traces for power paths (such as PVIN, VOUT, SW, and PGND) to reduce parasitic inductance and high-frequency loop area. It is also good for efficiency improvement.
- The device should be well decoupled by input capacitor and the input loop area should be as small as possible to reduce parasitic inductance, input voltage spike, and noise emission.
- SW track should be wide and short to reduce losses and noise radiation.
- It is recommended to have separated ground planes for PGND and AGND and connect the two planes at one point. Try to avoid overlap of input ground loop and output ground loop to prevent noise impact on output regulation.
- Arrange a "quiet" path for output voltage sense, and make it surrounded by a ground plane.

#### **Thermal Rules**

Good PCB layout improves the thermal performance and thus allows for high power dissipation even with a small IC package. Thermal layout guidelines are:

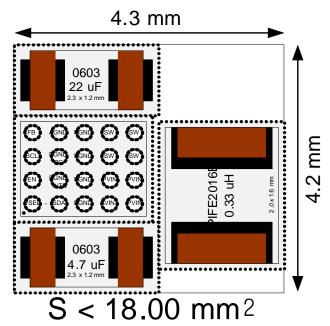



Figure 47. Placement Recommendation

- A four or more layers PCB board with solid ground planes is preferred for better heat dissipation.
- Use multiple vias around the IC to connect the inner ground layers to reduce thermal impedance.
- Use a large and thick copper area especially in the top layer for good thermal conduction and radiation.
- Use two layers or more for the high current paths (PVIN, PGND, SW) in order to split current into different paths and limit PCB copper self—heating.

#### **Component Placement**

- Input capacitor placed as close as possible to the IC.
- **PVIN** directly connected to Cin input capacitor, and then connected to the Vin plane. Local mini planes used on the top layer (green) and the layer just below the top layer (yellow) with laser vias.
- **AVIN** connected to the Vin plane just after the capacitor.
- **AGND** directly connected to the GND plane.
- PGND directly connected to Cin input capacitor, and then connected to the GND plane: Local mini planes used on the top layer (green) and the layer just below the top layer (yellow) with laser vias.
- **SW** connected to the Lout inductor with local mini planes used on the top layer (green) and the layer just below the top layer (yellow) with laser vias.

(See Figures 47 and 48 for examples)

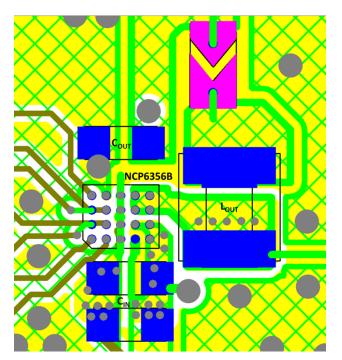



Figure 48. Demo Board Example

#### Legend:

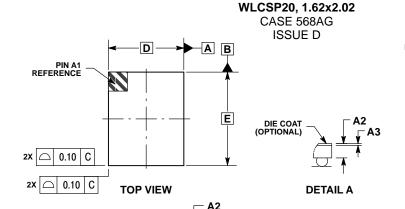
Green: top layer planes and wires

Yellow: layer1 plane and wires (just below top layer)

Big grey circles: normal vias

Small gray circles: top to layer1 vias

#### **ORDERING INFORMATION**

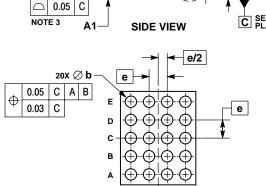

| Device           | Marking | Configuration         | Package                             | Shipping <sup>†</sup> |
|------------------|---------|-----------------------|-------------------------------------|-----------------------|
| NCP6356BFCCT1G   | 6356B   | 5.0 A<br>1.15 V<br>ON | WLCSP20 2.02 x 1.62 mm<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCP6356BSFCCT1G  | 6356BS  | 4.0 A<br>0.95 V<br>ON | WLCSP20 2.02 x 1.62 mm<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCP6356BSNFCCT1G | 6356BN  | 4.0 A<br>1.20 V<br>ON | WLCSP20 2.02 x 1.62 mm<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **Demo Board Available:**

The NCP6356BGEVB/D evaluation board that configures the device in typical application to supply constant voltage.

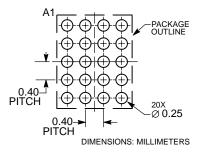
#### PACKAGE DIMENSIONS




#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
  3. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

|     | MILLIMETERS |      |  |
|-----|-------------|------|--|
| DIM | MIN         | MAX  |  |
| Α   |             | 0.60 |  |
| A1  | 0.17        | 0.23 |  |
| A2  | 0.33        | 0.39 |  |
| A3  | 0.02        | 0.04 |  |
| b   | 0.24        | 0.28 |  |
| D   | 1.62 BSC    |      |  |
| Е   | 2.02 BSC    |      |  |


0.40 BSC



**DETAIL A** 

0.10 C

# RECOMMENDED SOLDERING FOOTPRINT\*



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor is licensed by Philips Corporation to carry the I<sup>2</sup>C Bus Protocol.

**BOTTOM VIEW** 

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614

MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG

SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE#TRPBF LTM4668AIY#PBF

NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 MP8757GL-P

MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6#TR LTC3803ES6#TRM

LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC