<u>Linear Regulator</u> - Wide Input Voltage Range, Ultra-Low Iq, High PSRR

10 mA

The NCP785A is a high–performance linear regulator, offering a very wide operating input voltage range of up to 450 V DC, with an output current of up to 10 mA.

Ideal for high input voltage applications such as industrial and home metering, home appliances. The NCP785A family offers $\pm 5\%$ initial accuracy, extremely high–power supply rejection ratio and ultra–low quiescent current. The NCP785A is optimized for high–voltage line and load transients, making this part ideal for harsh environment applications.

The NCP785A is offered in fixed output voltage options 3.3 V, 5.0 V, 12 V and 15 V.

SOT-89 package offers good thermal performance and help to minimize the solution size.

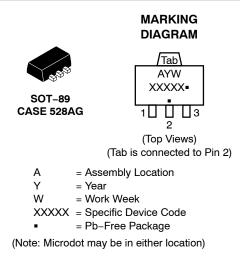
Features

• Wide Input Voltage Range:

DC: Up to 450 V

AC: 85 V to 260 V (half-wave rectifier and 2.2 µF capacitor)

- 10 mA Guaranteed Output Current
- Ultra Low Quiescent Current: Typ. 10 μ A (V_{OUT} \leq 5 V)
- ±5% Accuracy Over Full Load, Line and Temperature Variations
- Ultra-high PSRR: 70 dB at 60 Hz, 90 dB at 100 kHz
- Stable with Ceramic Output Capacitor 22 µF MLCC
- Thermal Shutdown and Current Limit Protection
- Available in Thermally Enhanced SOT89-3 Package
- This is a Pb–Free Device


Typical Applications

- Industrial Applications, Home Appliances
- Home Metering / Network Application
- Off-line Power Supplies

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

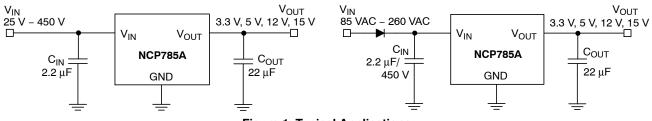


Figure 1. Typical Applications

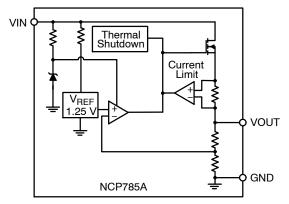


Figure 2. Simplified Internal Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No. (SOT–89)	Pin Name	Description			
1	VIN	Supply Voltage Input. Connect 2.2 μF capacitor from VIN to GND.			
2, Tab	GND	Ground connection.			
3	VOUT	Regulator Output. Connect 22 μF or larger MLCC capacitor from VOUT to GND.			

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	–0.3 to 700	V
Output Voltage	V _{OUT}	–0.3 to 18	V
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Storage Temperature	T _{STG}	–55 to 150	°C
ESD Capability, Human Body Model (All pins except HV pin no.1) (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Peak 650 V max 1 ms non repeated for 1 s

2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

Latch-up Current Maximum Rating tested per JEDEC standard: JESD78.

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, SOT-89 Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	79	°C/W

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage DC	ating Input Voltage DC		25		450	V
Output Voltage Accuracy	T_J = 25°C, lout = 100 $\mu A,$ 25 V \leq Vin \leq 450 V	V _{OUT}	3.1515	3.3	3.4485	V
	$-40^\circ C \leq T_J \leq 85^\circ C, \mbox{ lout}$ = 100 $\mu A,$ 25 V \leq Vin \leq 450 V	V _{OUT}	3.135	3.3	3.465	V
Line Regulation	25 V \leq Vin \leq 450 V, lout = 100 μA	Reg _{LINE}	-0.5	0.2	+0.5	%
Load Regulation	100 $\mu A \leq I_{OUT} \leq$ 10 mA, Vin = 35 V	Reg _{LOAD}	-1.0	0.6	+1.0	%
Maximum Output Current (Note 4)	$35 \text{ V} \leq \text{Vin} \leq 450 \text{ V}$	I _{OUT}	10.5			mA
Quiescent Current	I_{OUT} = 0, 25 V \leq Vin \leq 450 V	۱ _Q		7.5	14	μA
Ground Current (Note 4)	$\begin{array}{l} 25 \text{ V} \leq \text{Vin} \leq 450 \text{ V} \\ 0 < I_{OUT} \leq 10 \text{ mA} \end{array}$	I _{GND}			15	μΑ
Power Supply Rejection Ratio		PSRR		70		dB
Noise	f = 100 Hz to 100 kHz Vin = 340 V_{DC}, lout = 100 μA	V _{NOISE}		240		μVrms
Thermal Shutdown Temperature (Note 5)	Temperature increasing from $T_J = +25^{\circ}C$	T _{SD}		145		°C
Thermal Shutdown Hysteresis (Note 5)	Temperature falling from T _{SD}	T _{SDH}	-	10	-	°C

$\textbf{Table 4. ELECTRICAL CHARACTERISTICS, V_{OUT} = \textbf{3.3 V} (-40^{\circ}\text{C} \leq \text{T}_{J} \leq 85^{\circ}\text{C}; \text{ V}_{\text{IN}} = 340 \text{ V}; \text{ I}_{\text{OUT}} = 100 \ \mu\text{A}, \text{ C}_{\text{IN}} = 2.2 \ \mu\text{F}, \text{ I}_{\text{OUT}} = 100 \ \mu\text{A}, $	
$C_{OUT} = 22 \ \mu$ F, unless otherwise noted. Typical values are at $T_{J} = +25^{\circ}$ C.) (Note 3)	

Table 5. ELECTRICAL CHARACTERISTICS, V_{OUT} = 5.0 V (-40°C \leq T_J \leq 85°C; V_{IN} = 340 V; I_{OUT} = 100 μ A, C_{IN} = 2.2 μ F, C_{OUT} = 22 μ F, unless otherwise noted. Typical values are at T_J = +25°C.) (Note 3)

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage DC			V _{IN}	50		450	V
Output Voltage Accuracy	T _J = 25°C, lout = 100 μA, 50 V ≤	≤ Vin ≤ 450 V	V _{OUT}	4.775	5.0	5.225	V
	$-40^\circ C \leq T_J \leq 85^\circ C, \mbox{ lout}$ = 100 μ 50 V \leq Vin \leq 450 V	A,	V _{OUT}	4.75	5.0	5.25	V
Line Regulation	50 V \leq Vin \leq 450 V, lout = 100 μ	A	Reg _{LINE}	-0.5	0.2	+0.5	%
Load Regulation	100 μ A \leq I _{OUT} \leq 10 mA, Vin = 58	5 V	Reg _{LOAD}	-1.0	0.62	+1.0	%
Maximum Output Current (Note 4)	55 V \leq Vin \leq 450 V		I _{OUT}	10.5			mA
Quiescent Current	I_{OUT} = 0, 50 V \leq Vin \leq 450 V		Ι _Q		16	21	μΑ
Ground Current (Note 4)	50 V \leq Vin \leq 450 V 0 $<$ I _{OUT} \leq 10 mA		I _{GND}			23	μA
Power Supply Rejection Ratio	Vin = 340 V _{DC} +1 Vpp modulation, lout = 100 μA				70		dB
Noise	f = 100 Hz to 100 kHz Vin = 340 V _{DC} , lout = 100 μA		V _{NOISE}		300		μVrms
Thermal Shutdown Temperature (Note 5)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		145		°C
Thermal Shutdown Hysteresis (Note 5)	Temperature falling from T _{SD}		T _{SDH}	-	10	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

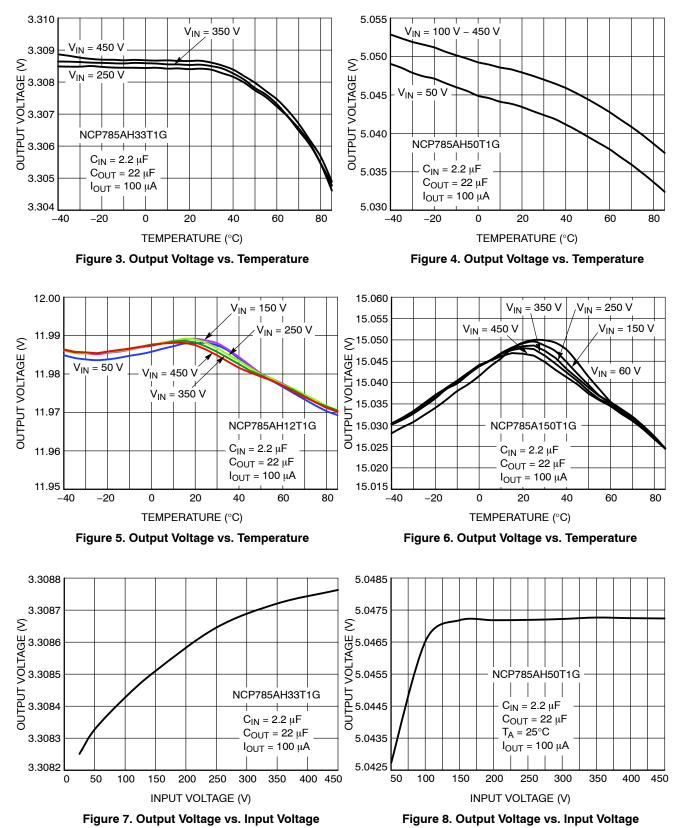
3. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A =

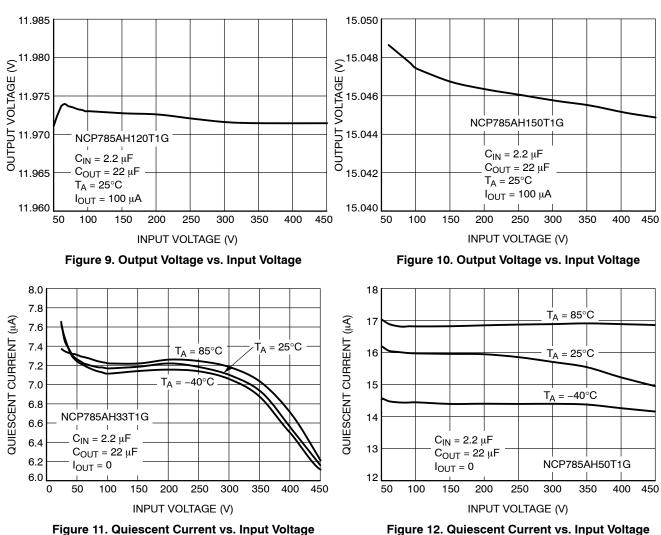
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. A proper heatsinking and/or low duty cycle pulse techniques are used to operate the device within the Safe Operating Area.
Guaranteed by design

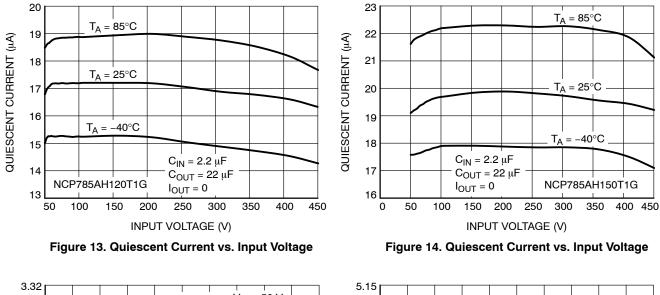
Parameter	Test Conditions		Symbol	Min	Тур	Мах	Unit
Operating Input Voltage DC			V _{IN}	55		450	V
Output Voltage Accuracy	T_{J} = 25°C, lout = 100 $\mu A,$ 55 V \leq	$Vin \le 450 V$	V _{OUT}	11.460	12	12.540	V
	$\begin{array}{l} -40^{\circ}C \leq T_J \leq 85^{\circ}C, \mbox{ lout} = 100 \ \mu\text{A} \\ 55 \ V \leq Vin \leq 450 \ V \end{array}$	-40°C \leq T $_{J}$ \leq 85°C, lout = 100 μ A, 55 V \leq Vin \leq 450 V		11.4	12	12.6	V
Line Regulation	55 V \leq Vin \leq 450 V, lout = 100 μ A	١	Reg _{LINE}	-0.5	0.1	+0.5	%/V
Load Regulation	100 μ A \leq I _{OUT} \leq 10 mA, Vin = 65	V	Reg _{LOAD}	-1.0	0.66	+1.0	%
Maximum Output Current (Note 7)	$55 \text{ V} \le \text{Vin} \le 450 \text{ V}$		I _{OUT}	10.5			mA
Quiescent Current	$I_{OUT} = 0, 55 \text{ V} \le \text{Vin} \le 450 \text{ V}$		Ι _Q		17	22	μΑ
Ground Current (Note 7)	55 V \leq Vin \leq 450 V 0 < I _{OUT} \leq 10 mA		I _{GND}			25	μΑ
Power Supply Rejection Ratio	$\label{eq:Vin} \begin{array}{l} \text{Vin} = 340 \ \text{V}_{DC} + 1 \ \text{Vpp} \\ \text{modulation, lout} = 100 \ \mu\text{A} \end{array}$				70		dB
Noise	f = 100 Hz to 100 kHz Vin = 340 V _{DC} , lout = 100 μA		V _{NOISE}		420		μVrms
Thermal Shutdown Temperature (Note 8)	Temperature increasing from T_J = +25°C		T _{SD}		145		°C
Thermal Shutdown Hysteresis (Note 8)	Temperature falling from T _{SD}		T _{SDH}	-	10	-	°C

Table 6. ELECTRICAL CHARACTERISTICS, V_{OUT} = 12 V (-40°C \leq T_J \leq 85°C; V_{IN} = 340 V; I_{OUT} = 100 μ A, C_{IN} = 2.2 μ F, C_{OUT} = 22 μ F, unless otherwise noted. Typical values are at T_J = +25°C.) (Note 6)

Table 7. ELECTRICAL CHARACTERISTICS, V_{OUT} = 15 V ($-40^{\circ}C \le T_J \le 85^{\circ}C$; V_{IN} = 340 V; I_{OUT} = 100 μ A, C_{IN} = 2.2 μ F, C_{OUT} = 22 μ F, unless otherwise noted. Typical values are at T_J = +25°C.) (Note 6)


Parameter	Test Conditions		Symbol	Min	Тур	Мах	Unit
Operating Input Voltage DC	perating Input Voltage DC		V _{IN}	60		450	V
Output Voltage Accuracy	T_J = 25°C, lout = 100 µA, 60 V ≤	≦ Vin ≤ 450 V	V _{OUT}	14.325	15	15.675	V
	$-40^\circ C \leq T_J \leq 85^\circ C, \mbox{ lout}$ = 100 μa 60 V \leq Vin \leq 450 V	Α,	V _{OUT}	14.25	15	15.75	V
Line Regulation	60 V \leq Vin \leq 450 V, lout = 100 μ	٩	Reg _{LINE}	-0.5	0.1	+0.5	%/V
Load Regulation	100 μ A \leq I _{OUT} \leq 10 mA, Vin = 65	δV	Reg _{LOAD}	-1.0	0.66	+1.0	%
Maximum Output Current (Note 7)	$65 \text{ V} \leq \text{Vin} \leq 450 \text{ V}$		I _{OUT}	10.5			mA
Quiescent Current	I _{OUT} = 0, 60 V ≤ Vin ≤ 450 V		۱ _Q		18	22	μΑ
Ground Current (Note 7)	$\begin{array}{l} 60 \text{ V} \leq \text{Vin} \leq 450 \text{ V} \\ 0 < \text{I}_{OUT} \leq 10 \text{ mA} \end{array}$		I _{GND}			25	μΑ
Power Supply Rejection Ratio	Vin = 340 V _{DC} +1 Vpp modulation, lout = 100 μA				70		dB
Noise	f = 100 Hz to 100 kHz Vin = 340 V _{DC} , lout = 100 μA		V _{NOISE}		500		μVrms
Thermal Shutdown Temperature (Note 8)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		145		°C
Thermal Shutdown Hysteresis (Note 8)	Temperature falling from T _{SD}		T _{SDH}	-	10	-	°C


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


6. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A = 0.0000$

25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 7. A proper heatsinking and/or low duty cycle pulse techniques are used to operate the device within the Safe Operating Area.

8. Guaranteed by design

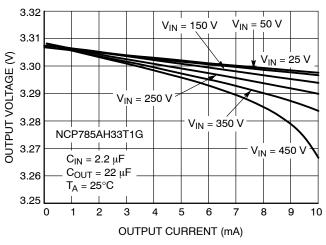
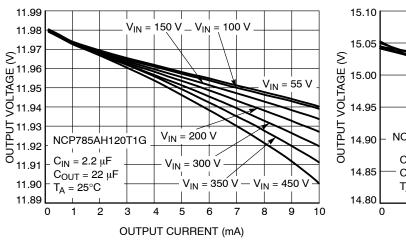



Figure 15. Output Voltage vs. Output Current

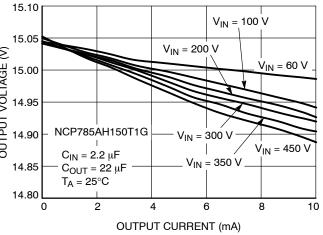
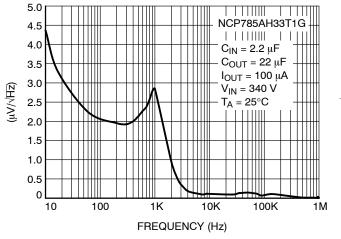




Figure 16. Output Voltage vs. Output Current

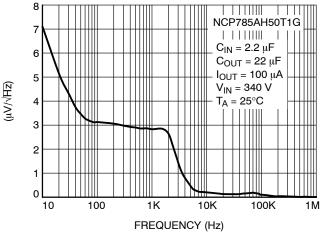


Figure 19. Output Noise Density vs. Frequency

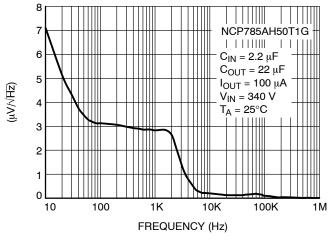


Figure 21. Output Noise Density vs. Frequency

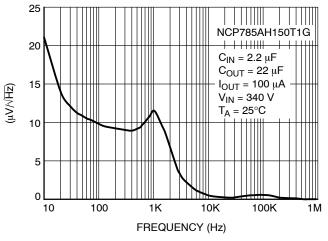


Figure 22. Output Noise Density vs. Frequency

APPLICATION INFORMATION

The typical application circuit for the NCP785A device is shown below.

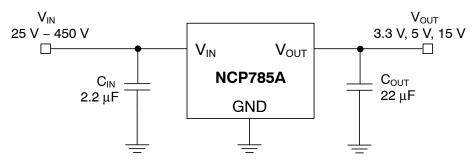


Figure 23. Typical Application Schematic

Input Decoupling (C1)

A 1 μ F capacitor either ceramic or electrolytic is recommended and should be connected close to the input pin of NCP785A. Higher value 2.2 μ F is necessary to sustain the required minimum input voltage at full load for AC voltage as low as 85 V with half wave rectifier.

Output Decoupling (C2)

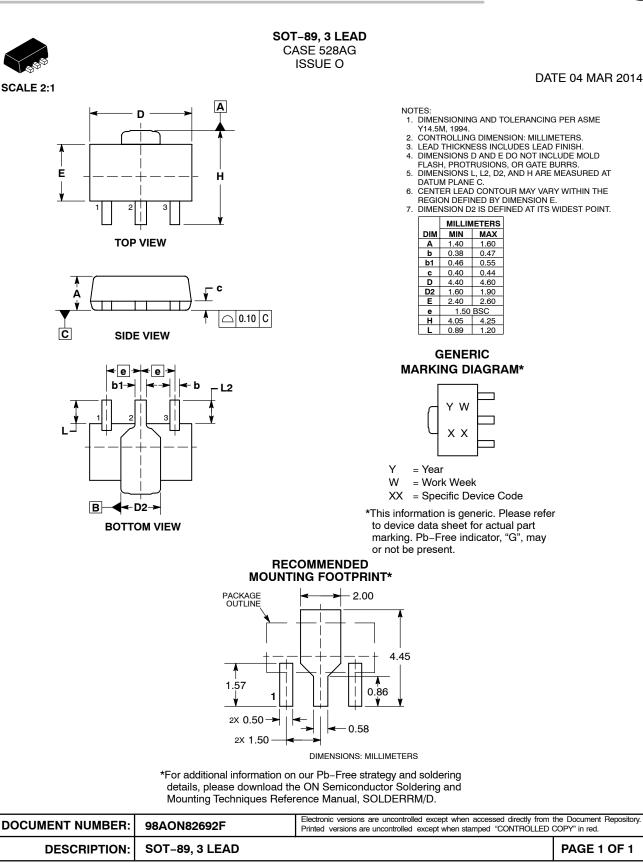
The NCP785A Regulator does not require any specific Equivalent Series Resistance (ESR). Thus capacitors exhibiting ESRs ranging from a few m Ω up to 0.5 Ω can be used safely. The minimum decoupling value is 22 μ F. The regulator accepts ceramic chip capacitors as well as tantalum devices or low ESR electrolytic capacitors. Larger values improve noise rejection and load transient response.

Layout Recommendations

Please be sure the V_{IN} and GND lines are sufficiently wide. When the impedance of these lines is high, there is a chance to pick up noise or to cause the malfunction of regulator.

Set external components, especially the output capacitor, as close as possible to the circuit, and make leads as short as possible.

Thermal


As power across the NCP785A increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design layout and used package. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. This is stating that when the NCP785A has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications.

ORDERING INFORMATION

Part Number	Output Voltage	Marking	Package	Shipping [†]
NCP785AH33T1G	3.3 V	AA		
NCP785AH50T1G	5 V	AC	SOT-89	
NCP785AH120T1G	12 V	AJ	(Pb-Free)	1000 / Tape & Reel
NCP785AH150T1G	15 V	AD		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP1871-0.6-1.875EVALZ ADP1202-1.8-EVALZ ADP2102-2-EVALZ ADP1202-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKITIZ LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV