NCS1002A

Constant Voltage / Constant Current Secondary-Side Controller

Description

The NCS1002A is a performance upgrade from the NCS1002 focused on reducing power consumption in applications that require more efficient operation. It is a highly integrated solution for Switching Mode Power Supply (SMPS) applications requiring a dual control loop to perform Constant Voltage (CV) and Constant Current (CC) regulation. The NCS1002A integrates a 2.5 V voltage reference and two precision op amps. The voltage reference, along with Op Amp 1 , is the core of the voltage control-loop. Op Amp 2 is an independent, uncommitted amplifier specifically designed for the current control. Key external components needed to complete the two control loops are: (a) A resistor divider that senses the output of the power supply (battery charger) and fixes the voltage regulation set point at the specified value. (b) A sense resistor that feeds the current sensing circuit with a voltage proportional to the DC output current. This resistor determines the current regulation set point and must be adequately rated in terms of power dissipation. The NCS1002A comes in a small 8-pin SOIC package and is ideal for space-shrunk applications such as battery chargers.

Features

- Low Input Offset Voltage: 0.5 mV , Typ
- Input Common-Mode Range includes Ground
- Low Quiescent Current: $75 \mu \mathrm{~A}$ per Op Amp at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Large Output Voltage Swing
- Wide Power Supply Range: 3 V to 36 V
- High ESD Protection: 2 kV
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Battery Chargers
- Switch Mode Power Supplies

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply Voltage (V_{CC} to GND) (Operating Range $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 36 V)	V_{CC}	36	V
Differential Input Voltage	$\mathrm{V}_{\text {id }}$	36	V
Input Voltage	V_{i}	-0.3 to +36	V
ESD Protection Voltage at Pin	$\mathrm{V}_{\mathrm{ESD}}$	2000	V
Maximum Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Specification Temperature Range $\left(\mathrm{T}_{\text {min }}\right.$ to $\mathrm{T}_{\text {max }}$)	T_{A}	-40 to +105	${ }^{\circ} \mathrm{C}$
Operating Free-Air Temperature Range	$\mathrm{T}_{\text {oper }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Parameter	Symbol	Rating	Unit
Thermal Resistance	Junction-to-Ambient	$R_{\theta J A}$	175
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
I CC	Total Supply Current, excluding current in the Voltage Reference $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{no}$ load; $-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$		0.15	0.25	mA	
ICC	Total Supply Current, excluding Current in the Voltage Reference $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{no}$ load; $-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	0.2	0.3	mA		

OP AMP 1 (OP AMP WITH NONINVERTING INPUT CONNECTED TO THE INTERNAL $V_{\text {ref }}$)
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

V_{10}	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0	mV
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$			3.0	mV
DV10	Input Offset Voltage Drift ($-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$)			7.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{IIB}^{\text {d }}$	Input Bias Current (Inverting Input Only)			20	150	nA
AVD	$\text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right. \text {, }$$\left.\mathrm{V}_{\mathrm{ICM}}=0 \mathrm{~V}\right)$			100		V/mV
PSRR	Power Supply Rejection ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$)		80	100		dB
Isource	Output Source Current ($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{id}}=1 \mathrm{~V}$)		20	40		mA
lo	Short Circuit to GND ($\left.\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$			40	60	mA
ISINK	Output Current Sink ($\mathrm{V}_{\text {id }}=-1 \mathrm{~V}$)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V} \\ (\text { Note 1) } \end{gathered}$	1	10		mA
		$\mathrm{V}_{\text {CC }}=+15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$	10	20		mA
V_{OH}	Output Voltage Swing, High ($\left.\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\right)$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	26	27		V
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	26			
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	27	28		
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	27			
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing, Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0	50	mV
SR	$\begin{aligned} & \text { Slew Rate }\left(A V=+1, V_{i}=0.5 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right. \text {, } \\ & \left.R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right) \end{aligned}$		0.2	0.4		V/us
GBP	$\begin{aligned} & \text { Gain Bandwidth Product }\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{AV}=+1\right. \text {, (Note 1) } \\ & \left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{I \mathrm{~N}}=10 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}}\right) \end{aligned}$		0.5	0.9		MHz
THD	Total Harmonic Distortion ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{AV}=10$, $\left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{PP}}\right)$			0.08		\%

OP AMP 2 (INDEPENDENT OP AMP) ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

V_{10}	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	2.0	mV
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$			3.0	
DV10	Input Offset Voltage Drift ($-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$)			7.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{10}	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	75	nA
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$			150	
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	150	nA
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$			200	
AVD	Large Signal Voltage Gain ($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, $R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}$ to 11.4 V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	100		V/mV
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	25			
PSRR	Power Supply Rejection ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 30 V)		80	100		dB

1. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit

OP AMP 2 (INDEPENDENT OP AMP) (continued) ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

$V_{\text {ICM }}$	Input Common Mode Voltage Range (Note 2)$\left(\mathrm{V}_{\mathrm{CC}}=+30 \mathrm{~V}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.5 \end{gathered}$	V
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	0		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 2.0 \end{gathered}$	
CMRR	Common Mode Rejection Ratio (Note 4)	$\begin{gathered} 0 \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	70	85		dB
		$\begin{gathered} 0 \text { to } \mathrm{V}_{\mathrm{CC}}-2.2 \mathrm{~V} \\ -40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C} \end{gathered}$	60			
ISOURCE	Output Current Source ($\left.\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\text {ID }}=+1 \mathrm{~V}\right)$		20	40		mA
Io	Short-Circuit to GND ($\left.\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$			40	60	mA
${ }^{\text {I SINK }}$	Output Current Sink (VID $=-1 \mathrm{~V}$)	$\mathrm{V}_{\text {CC }}=+15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}$	1	10		mA
		$\mathrm{V}_{\text {CC }}=+15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$	10	20		mA
V_{OH}	Output Voltage Swing, High ($\left.\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\right)$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	26	27		V
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	26			
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	27	28		
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	27			
VOL	Output Voltage Swing, Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0	50	mV
SR	Slew Rate ($\mathrm{AV}=+1, \mathrm{~V}_{\mathrm{i}}=0.5 \mathrm{~V}$ to $3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$)		0.2	0.4		V/us
GBP	$\begin{aligned} & \text { Gain Bandwidth Product }\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{AV}=+1,\right. \\ & \left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}}\right) \text { (Note 4) } \end{aligned}$		0.5	0.9		MHz
THD	$\begin{aligned} & \text { Total Harmonic Distortion }(f=1 \mathrm{kHz}, \mathrm{AV}=10 \text {, } \\ & \left.R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{P P}\right) \end{aligned}$			0.08		\%
$\mathrm{e}_{\text {noise }}$	Equivalent Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}$)			50		$\mathrm{nV} / \sqrt{\text { Hz }}$

VOLTAGE REFERENCE ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

I_{K}	Cathode Current		0.05		100	mA
$\mathrm{V}_{\text {ref }}$	Reference Voltage ($\mathrm{I}_{\mathrm{K}}=1 \mathrm{~mA}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.49	2.5	2.51	V
		$-40 \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	2.48	2.5	2.52	
$\Delta \mathrm{V}_{\text {ref }}$	Reference Deviation over Temperature ($\mathrm{V}_{\mathrm{KA}}=\mathrm{V}_{\text {ref }}, \mathrm{I}_{\mathrm{K}}=10 \mathrm{~mA},-40 \leq \mathrm{T}_{\mathrm{A}} \leq$ $+105^{\circ} \mathrm{C}$) (Note 4)			7.0	30	mV
$I_{\text {min }}$	Minimum Cathode Current for Regulation (2.4875 $\mathrm{V}_{\mathrm{f}} \leq \mathrm{V}_{\mathrm{KA}} \leq 2.5125 \mathrm{~V}_{\mathrm{f}}$)			10	50	$\mu \mathrm{A}$
I ZKA I	Dynamic Impedance (Note 3) $\left(\mathrm{V}_{\mathrm{KA}}=\mathrm{V}_{\text {ref }}, \mathrm{I}_{\mathrm{K}}=1 \mathrm{~mA}\right.$ to $100 \mathrm{~mA}, \mathrm{f}<1 \mathrm{kHz}$)			0.2	0.5	Ω

2. The input common-mode voltage of either input signal should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode range is $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$. Both inputs can go to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ without damage.
3. The Dynamic Impedance is defined as $I Z K A I=\Delta V_{K A} / \Delta I_{K}$.
4. Guaranteed by design and/or characterization.

Figure 1. Input Offset Voltage vs. Temperature

Figure 2. IB vs. Temperature

Figure 3. Vref as a Function of IK

Figure 4. Vref Over Temperature

Figure 5. Ref Dynamic Impedance vs.
Temperature

Figure 6. NCS1002A PSRR vs. Supply Voltage

Figure 7. NCS1002A CMRR vs. Supply Voltage

Figure 8. Distortion vs. Frequency

Figure 9. Output Voltage Swing vs. Output Current $V_{\text {id }}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 36 V

Figure 1. AC Adapter Application

ORDERING INFORMATION

Device	Package	Shipping †
NCS1002ADR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG
NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG
NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G
NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M
NCP81101MNTXG TEA19362T/1J IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG
NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G NCP1246ALD065R2G AZ494AP-E1

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

