NCS199A1, NCS199A2, NCS199A3

Current-Shunt Monitor, Voltage Output, Bi-Directional Zero-Drift

The NCS199A1, NCS199A2 and NCS199A3 are voltage output current shunt monitors that can measure voltage across shunts at common-mode voltages from -0.3 V to 26 V , independent of supply voltage. Three fixed gains are available: $50 \mathrm{~V} / \mathrm{V}, 100 \mathrm{~V} / \mathrm{V}$ or $200 \mathrm{~V} / \mathrm{V}$. The low offset of the zero-drift architecture enables current sensing with maximum drops across the shunt as low as 10 mV full-scale.

The devices can operate from a single +2.7 V to +26 V power supply, drawing a maximum of $100 \mu \mathrm{~A}$ of supply current. All versions are specified over the extended operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$).

Features

- Wide Common-Mode Input Range -0.3 V to 26 V
- Supply Voltage Range from 2.7 V to 26 V
- Low Offset Voltage $\pm 150 \mu \mathrm{~V}$ Max
- Low Offset Drift $\left(0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$
- Low Gain Error (max 1.5\%)
- Rail-to-rail Input and Output Capability
- Low Current Consumption (typ $65 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ max)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site Qualified and PPAP Capable
- These are Pb -free Devices

Typical Applications

- Current Sensing (High-Side/Low-Side)
- Automotive
- Telecom
- Sensors

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

XXX = Specific Device Code (See page 4)
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

Product	Gain	R3-R4	R1-R2
NCS199A1	50	$20 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
NCS199A2	100	$10 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
NCS199A3	200	$5 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$

ORDERING INFORMATION
See detailed ordering, marking and shipping information on page 4 of this data sheet.

Figure 1. Application Schematic
Table 1. MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Supply Voltage (Note 1)		V_{S}	+26	V
Analog Inputs	Differential ($\mathrm{V}_{\mathrm{IN+}}$)-($\mathrm{V}_{\mathrm{IN}-}$)	$\mathrm{V}_{\mathrm{IN}+}, \mathrm{V}_{\text {IN- }}$	-26 to +26	V
	Common-Mode (Note 2)		GND-0.3 to +26	
REF Input		$\mathrm{V}_{\text {REF }}$	GND-0.3 to (V_{s}) +0.3	V
Output (Note 2)		$\mathrm{V}_{\text {OUT }}$	GND-0.3 to (V_{s}) +0.3	V
Input Current into Any Pin (Note 2)			5	mA
Maximum Junction Temperature		$\mathrm{T}_{\mathrm{J} \text { (max) }}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD Capability, Human Body Model (Note 3)		HBM	± 3000	V
ESD Capability, Machine Model (Note 3)		MM	± 100	V
Charged Device Model (Note 3)		CDM	± 1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe operating parameters.
2. Input voltage at any pin may exceed the voltage shown if current at that pin is limited to 5 mA
3. This device series incorporates ESD protection and is tested by the following methods

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115) ESD Charged Device Model tested per AEC-Q100-011.
Latchup Current Maximum Rating: 50 mA per JEDEC standard: JESD78
Table 2. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, SC70 (Note 4) Thermal Resistance, Junction-to-Air (Note 5)	$R_{\theta J A}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe operating parameters.
5. Values based on copper area of $645 \mathrm{~mm}^{2}$ (or $1 \mathrm{in}^{2}$) of 1 oz copper thickness and FR4 PCB substrate.

Table 3. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Supply Voltage	V_{S}	2.7	26	$\mathrm{~V}^{\prime}$
Ambient Temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, guaranteed by characterization and/or design. At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SENSE }}=\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}$, and $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

| Parameter | Test Conditions | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | GAIN

NCS199A1		G		50		$\mathrm{~V} / \mathrm{V}$
NCS199A2				100		
NCS199A3						
Gain Error	$\mathrm{V}_{\text {SENSE }}=-5 \mathrm{mV}$ to 5 mV	G_{e}		± 0.2	± 1.5	$\%$
Gain Error vs. Temperature	$\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			7	20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Nonlinearity Error	$\mathrm{V}_{\text {SENSE }}=-5 \mathrm{mV}$ to 5 mV			± 0.01		$\%$
Maximum Capacitive Load	No sustained oscillation			1		nF

VOLTAGE OFFSET

Offset Voltage (RTI Note 6)		$\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$	$\mathrm{V}_{\text {OS }}$	± 5.0	± 150	$\mu \mathrm{V}$
Offset Drift	NCS199A2, NCS199A3 NCS199A1		¢V/סT	0.1 0.5	$\begin{aligned} & 0.6 \\ & 2.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

INPUT

Input Bias Current		$\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$	$\mathrm{IIB}^{\text {a }}$			60	$\mu \mathrm{A}$
Common-Mode Input Voltage Range			V_{CM}	-0.3		26	V
Common-Mode Rejection Ratio	$\begin{aligned} & \text { NCS199A2, } \\ & \text { NCS199A3 } \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=2 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{SENSE}}=0 \mathrm{mV} \end{gathered}$	CMRR	100	115		dB
		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN+}+}=3 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\text {SENSE }}=0 \mathrm{mV} \end{gathered}$		100	115		dB
		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{1 N_{+}}=0 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\text {SENSE }}=0 \mathrm{mV}\left(\mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$		100	120		dB
Common-Mode Rejection Ratio	NCS199A1	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }+}=2 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\text {SENSE }}=0 \mathrm{mV} \end{gathered}$	CMRR	97	110		dB
		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN+}+}=3 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\text {SENSE }}=0 \mathrm{mV} \end{gathered}$		97	110		dB
		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{1 N_{+}}=0 \mathrm{~V} \text { to }+26 \mathrm{~V}, \\ \mathrm{~V}_{\text {SENSE }}=0 \mathrm{mV}\left(\mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$		97	115		dB

OUTPUT

Output Voltage Low	Referenced from GND $R_{\mathrm{L}}=10 \mathrm{k} \Omega$ to Ground	V_{OL}		5	50	mV
Output Voltage High	Referenced from V_{S} $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to Ground	V_{OH}		0.05	0.2	V

DYNAMIC PERFORMANCE

Bandwidth (${ }_{-3 \mathrm{CbB}}$)	$\begin{aligned} & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}, \text { NCS199A1 } \\ & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}, \text { NCS199A2 } \\ & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}, \text { NCS199A3 } \end{aligned}$	BW	$\begin{gathered} 100 \\ 60 \\ 40 \end{gathered}$	kHz
Slew Rate		SR	0.4	V/us

NOISE

Spectral Density, 1 kHz (RTI Note 6)		e_{n}		35		$\mathrm{nV} / \mathrm{vHz}$

POWER SUPPLY

Operating Voltage Range	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$	V_{S}	$\mathbf{2 . 7}$		$\mathbf{2 6}$	V
Quiescent Current	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$	I_{DD}		65	100	$\mu \mathrm{~A}$
Quiescent Current over Temperature	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$				$\mathbf{1 1 5}$	$\mu \mathrm{A}$
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$ to $+26 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}+}=18 \mathrm{~V}$, $\mathrm{V}_{\text {SENSE }}=0 \mathrm{mV}$	PSRR		± 0.1	± 10	$\mu \mathrm{~V} / \mathrm{V}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. RTI = referenced-to-input.

ORDERING INFORMATION

Device	Gain	Marking	Package	Shipping \dagger
NCS199A1SQT2G	50	ACQ	SC70-6 (Pb-Free)	$3000 /$ Tape and Reel
NCS199A2SQT2G	100	ACR		
NCS199A3SQT2G	200	ACP		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

NCS199A1, NCS199A2, NCS199A3

PACKAGE DIMENSIONS

For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Current Sense Amplifiers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MCP6C02T-050H/Q8B TSC210ICT INA212BIDCKR MAX4372HEBT+T NTE955M INA199C3DCKT LTC6102IDD\#PBF FAN4010IL6X-F113 LT6100IDD\#PBF LT1217CN8\#PBF INA212CIDCKR LMP8480ASQDGKRQ1 INA212CIRSWT LMP8481AHQDGKRQ1 LT6108HDCB-1\#TRMPBF INA211CIRSWT LT6108AHMS8-1\#PBF INA214CIRSWR LT1620CMS8\#PBF INA215CIDCKR LTC6101HVBCS5\#TRMPBF LT6106HS5\#PBF NTE1609 NTE926 NTE955MC NTE955S NTE955SM NTE978 NTE978C NTE978SM AD8211YRJZ-R2 AD8213WHRMZ AD8214ARMZ AD8214ARMZ-R7 AD8219BRMZ AD8290ACPZ-R2 AD8290ACPZ-R7 AD22057RZ AD8215YRZ AD8210YRZ AD22057RZ-RL AD8210YRZ-REEL7 AD8215WYRZ AD8210WYRZ-R7 ADM4073FWRJZ-REEL7 LT1999HMS8-50F\#WPBF LT1999HMS8-10F\#WPBF LTC6102HVIMS8\#PBF LTC6101AIMS8\#PBF LTC6102CMS8-1\#PBF

