### 0.9 V, Rail-to-Rail, Single Operational Amplifier NCS2001, NCV2001

The NCS2001 is an industry first sub-one voltage operational amplifier that features a rail-to-rail common mode input voltage range, along with rail-to-rail output drive capability. This amplifier is guaranteed to be fully operational down to 0.9 V , providing an ideal solution for powering applications from a single cell Nickel Cadmium (NiCd) or Nickel Metal Hydride (NiMH) battery. Additional features include no output phase reversal with overdriven inputs, trimmed input offset voltage of 0.5 mV , extremely low input bias current of 40 pA , and a unity gain bandwidth of 1.4 MHz at 5.0 V . The tiny NCS2001 is the ideal solution for small portable electronic applications and is available in the space saving SOT23-5 and SC70-5 packages with two industry standard pinouts.

## Features

- 0.9 V Guaranteed Operation
- Rail-to-Rail Common Mode Input Voltage Range
- Rail-to-Rail Output Drive Capability
- No Output Phase Reversal for Over-Driven Input Signals
- 0.5 mV Trimmed Input Offset
- 10 pA Input Bias Current
- 1.4 MHz Unity Gain Bandwidth at $\pm 2.5 \mathrm{~V}, 1.1 \mathrm{MHz}$ at $\pm 0.5 \mathrm{~V}$
- Tiny SC70-5 and SOT23-5 Packages
- NCV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant


## Typical Applications

- Single Cell NiCd/NiMH Battery Powered Applications
- Cellular Telephones
- Pagers
- Personal Digital Assistants
- Electronic Games
- Digital Cameras
- Camcorders
- Hand-Held Instruments


This device contains 63 active transistors.
Figure 1. Typical Application

MARKING DIAGRAMS


XXX $=$ Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS


Style 1 Pinout (SN1T1, SQ1T2)


Style 2 Pinout (SN2T1, SQ2T2)

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the dimensions section on page 14 of this data sheet.

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ ) | $\mathrm{V}_{\mathrm{S}}$ | 7.0 | V |
| Input Differential Voltage Range (Note 1) | $V_{\text {IDR }}$ | $\mathrm{V}_{\mathrm{EE}}-300 \mathrm{mV}$ to 7.0 V | V |
| Input Common Mode Voltage Range (Note 1) | $V_{\text {ICR }}$ | $\mathrm{V}_{\mathrm{EE}}-300 \mathrm{mV}$ to 7.0 V | V |
| Output Short Circuit Duration (Note 2) | $\mathrm{t}_{\text {Sc }}$ | Indefinite | sec |
| Junction Temperature | $\mathrm{T}_{J}$ | 150 | ${ }^{\circ} \mathrm{C}$ |
| Power Dissipation and Thermal Characteristics SOT23-5 Package <br> Thermal Resistance, Junction-to-Air Power Dissipation <br> @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ SC70-5 Package <br> Thermal Resistance, Junction-to-Air Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ | $\begin{gathered} \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \end{gathered}$ | $\begin{aligned} & 235 \\ & 340 \\ & \\ & 280 \\ & 286 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ <br> mW <br> ${ }^{\circ} \mathrm{C} / \mathrm{W}$ <br> mW |
| Operating Ambient Temperature Range NCS2001 <br> NCV2001 (Note 3) | $\mathrm{T}_{\text {A }}$ | $\begin{aligned} & -40 \text { to }+105 \\ & -40 \text { to }+125 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| ESD Protection at any Pin Human Body Model (Note 4) | $\mathrm{V}_{\text {ESD }}$ | 1500 | V |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Either or both inputs should not exceed the range of $\mathrm{V}_{\mathrm{EE}}-300 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{EE}}+7.0 \mathrm{~V}$.
2. Maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded. $T_{J}=T_{A}+\left(P_{D} R_{\theta J A}\right)$.
3. NCV prefix is qualified for automotive usage.
4. ESD data available upon request.

## DC ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

| Characteristics | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Offset Voltage $\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.45 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{10}$ | $\begin{aligned} & -6.0 \\ & -8.5 \\ & -9.5 \\ & -6.0 \\ & -7.0 \\ & -7.5 \\ & \\ & -6.0 \\ & -7.5 \\ & -7.5 \end{aligned}$ | $\begin{gathered} 0.5 \\ - \\ - \\ 0.5 \\ - \\ - \\ 0.5 \\ - \end{gathered}$ | $\begin{aligned} & 6.0 \\ & 8.5 \\ & 9.5 \\ & \\ & 6.0 \\ & 7.0 \\ & 7.5 \\ & \\ & 6.0 \\ & 7.5 \\ & 7.5 \end{aligned}$ | mV |
| Input Offset Voltage Temperature Coefficient $\left(\mathrm{R}_{\mathrm{S}}=50\right)$ $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}$ | $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$ | - | 8.0 | - | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current ( $\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ to 5.0 V ) | $\mathrm{I}_{\mathrm{IB}}$ | - | 10 | - | pA |
| Input Common Mode Voltage Range | $V_{\text {ICR }}$ | - | $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | - | V |
| Large Signal Voltage Gain $\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.45 \mathrm{~V} \\ R_{\mathrm{L}} & =10 \mathrm{k} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \\ \mathrm{~V}_{\mathrm{CC}} & =1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.5 \mathrm{~V} \\ R_{\mathrm{L}} & =10 \mathrm{k} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \\ \mathrm{~V}_{\mathrm{CC}} & =2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ R_{\mathrm{L}} & =10 \mathrm{k} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \end{aligned}$ | Avol | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | $\begin{aligned} & 40 \\ & 20 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$ | - | kV/V |

DC ELECTRICAL CHARACTERISTICS (continued)
( $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

| Characteristics | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { Output Voltage Swing, High State Output }\left(\mathrm{V}_{\mathrm{ID}}=+0.5 \mathrm{~V}\right)$ | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & 0.40 \\ & 0.35 \\ & 0.40 \\ & 0.35 \\ & 0.40 \\ & 0.35 \\ & \\ & 1.45 \\ & 1.40 \\ & 1.45 \\ & 1.40 \\ & 1.45 \\ & 1.40 \\ & \\ & 2.45 \\ & 2.40 \\ & 2.45 \\ & 2.40 \\ & 2.45 \\ & 2.40 \end{aligned}$ | 0.494 0.466 <br> - <br> - <br> - <br> - <br> 1.498 <br> 1.480 <br> - <br> - <br> - <br> 2.498 <br> 2.475 |  | V |
| $\text { Output Voltage Swing, Low State Output }\left(\mathrm{V}_{\mathrm{ID}}=-0.5 \mathrm{~V}\right)$ | $\mathrm{V}_{\text {OL }}$ | - - - - - - - - - - - - - - - - - - - | -0.494 <br> -0.480 <br> - <br> - <br> - <br> -1.493 <br> $-1.480$ <br> - <br> - <br> - <br> -2.492 -2.479 | -0.40 -0.35 -0.40 -0.35 -0.40 -0.35 -1.45 -1.40 -1.45 -1.40 -1.45 -1.40 -2.45 -2.40 -2.45 -2.40 -2.45 -2.40 | V |

DC ELECTRICAL CHARACTERISTICS (continued)
( $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

| Characteristics | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Common Mode Rejection Ratio ( $\mathrm{V}_{\text {in }}=0$ to 5.0 V ) | CMRR | 60 | 70 | - | dB |
| Power Supply Rejection Ratio ( $\mathrm{V}_{\mathrm{CC}}=0.5 \mathrm{~V}$ to 2.5 V, $\mathrm{V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ ) | PSRR | 55 | 65 | - | dB |
| Output Short Circuit Current $\mathrm{V}_{\mathrm{CC}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}= \pm 0.4 \mathrm{~V}$ <br> Source Current High Output State <br> Sink Current Low Output State <br> $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}= \pm 0.5 \mathrm{~V}$ <br> Source Current High Output State <br> Sink Current Low Output State <br> $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}= \pm 0.5 \mathrm{~V}$ <br> Source Current High Output State <br> Sink Current Low Output State | Isc | $\begin{gathered} 0.5 \\ - \\ 15 \\ - \\ 40 \end{gathered}$ | $\begin{gathered} 1.2 \\ -3.0 \\ 29 \\ -40 \\ \\ 76 \\ -96 \end{gathered}$ | $\begin{gathered} - \\ -1.5 \\ - \\ -20 \\ - \\ -50 \end{gathered}$ | mA |
| Power Supply Current (Per Amplifier, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ ) $\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.45 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | ID | - - - - - - - - - - | 0.51 - - 0.72 - - 0.82 | $\begin{aligned} & 1.10 \\ & 1.10 \\ & 1.10 \\ & 1.40 \\ & 1.40 \\ & 1.40 \\ & \\ & 1.50 \\ & 1.50 \\ & 1.50 \\ & \hline \end{aligned}$ | mA |

## AC ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

| Characteristics | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ) | $\mathrm{R}_{\text {in }}$ | - | $>1.0$ | - | tera $\Omega$ |
| Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ) | $\mathrm{C}_{\text {in }}$ | - | 3.0 | - | pF |
| Equivalent Input Noise Voltage ( $f=1.0 \mathrm{kHz}$ ) | $\mathrm{e}_{\mathrm{n}}$ | - | 100 | - | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\begin{aligned} & \text { Gain Bandwidth Product }(f=100 \mathrm{kHz}) \\ & \mathrm{V}_{\mathrm{CC}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \end{aligned}$ | GBW | $\begin{gathered} - \\ - \\ 0.5 \end{gathered}$ | $\begin{aligned} & 1.1 \\ & 1.3 \\ & 1.4 \end{aligned}$ | - | MHz |
| Gain Margin ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pf}$ ) | Am | - | 6.5 | - | dB |
| Phase Margin ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pf}$ ) | $\phi \mathrm{m}$ | - | 60 | - | - |
| Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{THD}=1.0 \%, \mathrm{~A}_{\mathrm{V}}=1.0$ ) | $\mathrm{BW}_{\mathrm{P}}$ | - | 80 | - | kHz |
| Total Harmonic Distortion $\left(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{A}_{\mathrm{V}}=1.0\right)$ $\begin{aligned} & f=1.0 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$ | THD | - | $\begin{gathered} 0.008 \\ 0.08 \end{gathered}$ | - | \% |
| Slew Rate $\left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.0 \mathrm{~V}\right.$ to $\left.2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{A}_{\mathrm{V}}=1.0\right)$ <br> Positive Slope <br> Negative Slope | SR | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | V/us |



Figure 2. Split Supply Output Saturation vs. Load Resistance


Figure 3. Split Supply Output Saturation vs. Load Current


Figure 4. Input Bias Current vs. Temperature


Figure 5. Gain and Phase vs. Frequency

$1 \mu \mathrm{~s} / \mathrm{div}$ )
Figure 6. Transient Response


Figure 7. Slew Rate

## NCS2001, NCV2001



Figure 8. Output Voltage vs. Frequency


Figure 9. Common Mode Rejection
vs. Frequency


Figure 10. Power Supply Rejection vs. Frequency

Figure 11. Output Short Circuit Sinking Current vs. Supply Voltage


Figure 12. Output Short Circuit Sourcing Current vs. Supply Voltage


Figure 13. Supply Current vs. Supply Voltage

## NCS2001, NCV2001



Figure 14. Total Harmonic Distortion vs. Frequency with 1.0 V Supply


Figure 15. Total Harmonic Distortion vs. Frequency with 1.0 V Supply


Figure 16. Total Harmonic Distortion vs. Frequency with 5.0 V Supply


Figure 17. Total Harmonic Distortion vs. Frequency with 5.0 V Supply


Figure 18. Slew Rate vs. Temperature


Figure 19. Gain Bandwidth Product vs. Temperature


Figure 20. Voltage Gain and Phase vs. Frequency


Figure 21. Gain and Phase Margin vs. Temperature


Figure 22. Gain and Phase Margin vs. Differential Source Resistance

Figure 24. Output Voltage Swing vs. Supply Voltage


Figure 23. Gain and Phase Margin vs. Output Load Capacitance


Figure 25. Gain and Phase Margin vs. Supply Voltage


Figure 26. Open Loop Voltage Gain vs. Supply Voltage


Figure 28. Input Offset Voltage vs. Common Mode Input Voltage Range, $\mathrm{V}_{\mathrm{S}}= \pm 0.45 \mathrm{~V}$


Figure 27. Input Offset Voltage vs. Common Mode Input Voltage Range $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$


Figure 29. Common-Mode Input Voltage Range vs. Power Supply Voltage

## APPLICATION INFORMATION AND OPERATING DESCRIPTION

## GENERAL INFORMATION

The NCS2001 is an industry first rail-to-rail input, rail-to-rail output amplifier that features guaranteed sub-one voltage operation. This unique feature set is achieved with the use of a modified analog CMOS process that allows the implementation of depletion MOSFET devices. The amplifier has a 1.0 MHz gain bandwidth product, $2.2 \mathrm{~V} / \mu \mathrm{s}$ slew rate and is operational over a power supply range less than 0.9 V to as high as 7.0 V .

## Inputs

The input topology chosen for this device series is unconventional when compared to most low voltage operational amplifiers. It consists of an N -Channel depletion mode differential transistor pair that drives a folded cascade stage and current mirror. This configuration extends the input common mode voltage range to encompass the $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{CC}}$ power supply rails, even when powered from a combined total of less than 0.9 V . Figures 27 and 28 show the input common mode voltage range versus power supply voltage.

The differential input stage is laser trimmed in order to minimize offset voltage. The N -Channel depletion mode MOSFET input stage exhibits an extremely low input bias current of less than 10 pA . The input bias current versus temperature is shown in Figure 4. Either one or both inputs can be biased as low as $\mathrm{V}_{\mathrm{EE}}$ minus 300 mV to as high as 7.0 V without causing damage to the device. If the input common mode voltage range is exceeded, the output will not display a phase reversal. If the maximum input positive or negative voltage ratings are to be exceeded, a series resistor must be used to limit the input current to less than 2.0 mA .

The ultra low input bias current of the NCS2001 allows the use of extremely high value source and feedback resistor without reducing the amplifier's gain accuracy. These high value resistors, in conjunction with the device input and printed circuit board parasitic capacitances $\mathrm{C}_{\mathrm{i}}$, will add an additional pole to the single pole amplifier in Figure 30. If low enough in frequency, this additional pole can reduce the phase margin and significantly increase the output settling time. The effects of $\mathrm{C}_{\mathrm{in}}$, can be canceled by placing a zero into the feedback loop. This is accomplished with the addition of capacitor $\mathrm{C}_{\mathrm{fb}}$. An approximate value for $\mathrm{C}_{\mathrm{fb}}$ can be calculated by:

$$
\mathrm{C}_{\mathrm{fb}}=\frac{\mathrm{R}_{\mathrm{in}} \times \mathrm{C}_{\mathrm{in}}}{\mathrm{R}_{\mathrm{fb}}}
$$



$$
\mathrm{C}_{\text {in }}=\text { Input and printed circuit board capacitance }
$$

Figure 30. Input Capacitance Pole Cancellation

## Output

The output stage consists of complementary P and N -Channel devices connected to provide rail-to-rail output drive. With a 2.0 k load, the output can swing within 50 mV of either rail. It is also capable of supplying over 75 mA when powered from 5.0 V and 1.0 mA when powered from 0.9 V .

When connected as a unity gain follower, the NCS2001 can directly drive capacitive loads in excess of 820 pF at room temperature without oscillating but with significantly reduced phase margin. The unity gain follower configuration exhibits the highest bandwidth and is most prone to oscillations when driving a high value capacitive load. The capacitive load in combination with the amplifier's output impedance, creates a phase lag that can result in an under-damped pulse response or a continuous oscillation. Figure 32 shows the effect of driving a large capacitive load in a voltage follower type of setup. When driving capacitive loads exceeding 820 pF , it is recommended to place a low value isolation resistor between the output of the op amp and the load, as shown in Figure 31. The series resistor isolates the capacitive load from the output and enhances the phase margin. Refer to Figure 33. Larger values of R will result in a cleaner output waveform but excessively large values will degrade the large signal rise and fall time and reduce the output amplitude. Depending upon the capacitor characteristics, the isolation resistor value will typically be between 50 to $500 \Omega$. The output drive capability for resistive and capacitive loads is shown in Figures 2, 3, and 23.


Isolation resistor R = 50 to 500
Figure 31. Capacitance Load Isolation

Note that the lowest phase margin is observed at cold temperature and low supply voltage.

$\mathrm{V}_{\mathrm{S}}= \pm 0.45 \mathrm{~V}$
$\mathrm{~V}_{\text {in }}=0.8 \mathrm{~V} \mathrm{Vp}$
$\mathrm{R}=0$
$\mathrm{C}_{\mathrm{L}}=820 \mathrm{pF}$
$\mathrm{A}_{\mathrm{V}}=1.0$
$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 32. Small Signal Transient Response with Large Capacitive Load

$\mathrm{V}_{\mathrm{S}}= \pm 0.45 \mathrm{~V}$
$\mathrm{~V}_{\text {in }}=0.8 \mathrm{~V} \mathrm{Vp}$
$\mathrm{R}=51$
$\mathrm{C}_{\mathrm{L}}=820 \mathrm{pF}$
$\mathrm{A}_{\mathrm{V}}=1.0$
$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 33. Small Signal Transient Response with Large Capacitive Load and Isolation Resistor



The non-inverting input threshold levels are set so that the capacitor voltage oscillates between $1 / 3$ and $2 / 3$ of $V_{C C}$. This requires the resistors $R_{1 a}, R_{1 b}$ and $R_{2}$ to be of equal value. The following formula can be used to approximate the output frequency.

$$
\mathrm{f}_{\mathrm{O}}=\frac{1}{1.39 \mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}}
$$

Figure 34. 0.9 V Square Wave Oscillator


Figure 35. Variable Duty Cycle Pulse Generator

## NCS2001, NCV2001



Figure 36. Positive Capacitance Multiplier


$$
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{1}} \approx 200 \mathrm{~Hz}
$$

$$
\mathrm{f}_{\mathrm{H}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}}} \approx 4.0 \mathrm{kHz}
$$

$$
A_{f}=1+\frac{R_{f}}{R_{2}}=11
$$

Figure 37. 1.0 V Voiceband Filter

## NCS2001, NCV2001



Figure 38. High Compliance Current Sink


| $\mathbf{I}_{\mathbf{s}}$ | $\mathbf{V}_{\mathbf{O}}$ |
| :---: | :---: |
| 435 mA | 34.7 mV |
| 212 mA | 36.9 mV |

For best performance, use low tolerance resistors.

Figure 39. High Side Current Sense

ORDERING INFORMATION

| Device | Marking | Package | Shipping ${ }^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| NCS2001SN1T1G | AAG | SOT23-5 |  |
| NCS2001SN2T1G | AAH |  |  |
| NCV2001SN2T1G* | MBB |  | 30e) |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

| DIM | INCHES |  | MILLIMETERS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 0.071 | 0.087 | 1.80 | 2.20 |
| B | 0.045 | 0.053 | 1.15 | 1.35 |
| C | 0.031 | 0.043 | 0.80 | 1.10 |
| D | 0.004 | 0.012 | 0.10 |  |
| G | 0.026 BSC |  | 0.65 |  |


(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

        5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

## STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. $\mathrm{N} / \mathrm{C}$
4. BASE
5. EMITTER

SOLDER FOOTPRINT


STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

## STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17TE/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZRL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG

