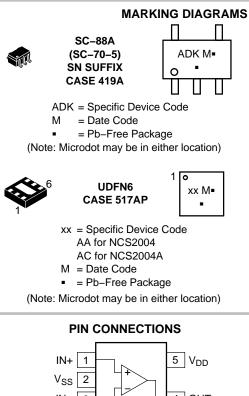
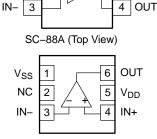
Operational Amplifier, Rail-to-Rail, 3.5 MHz, Wide Supply

The NCS2004 operational amplifier provides rail-to-rail output operation. The output can swing within 70 mV to the positive rail and 30 mV to the negative rail. This rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3.5 MHz bandwidth. The NCS2004 can operate on supply voltage as low as 2.5 V over the temperature range of -40° C to 125°C. The high bandwidth provides a slew rate of 2.4 V/µs while only consuming a typical 390 µA of quiescent current. Likewise the NCS2004 can run on a supply voltage as high as 16 V making it ideal for a broad range of battery operated applications. Since this is a CMOS device it has high input impedance and low bias currents making it ideal for interfacing to a wide variety of signal sensors. In addition it comes in either a small SC–88A or UDFN package allowing for use in high density PCB's.

Features

- Rail-To-Rail Output
- Wide Bandwidth: 3.5 MHz
- High Slew Rate: 2.4 V/µs
- Wide Power Supply Range: 2.5 V to 16 V
- Low Supply Current: 390 μA
- Low Input Bias Current: 45 pA
- Wide Temperature Range: -40°C to 125°C
- Small Packages: 5–Pin SC–88A and UDFN6 1.6x1.6
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Applications


- Notebook Computers
- Portable Instruments

ON Semiconductor®

www.onsemi.com

UDFN (Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NCS2004SQ3T2G	SC-88A (Pb-Free)	3000 / Tape & Reel
NCS2004MUTAG, NCS2004AMUTAG	UDFN6 (Pb–Free)	3000 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{DD}	Supply Voltage	16.5	V
V _{ID}	Input Differential Voltage	± Supply Voltage	V
VI	Input Common Mode Voltage Range	-0.2 V to (V _{DD} + 0.2 V)	V
I _I	Maximum Input Current	±10	mA
Ι _Ο	Output Current Range	±100	mA
	Continuous Total Power Dissipation (Note 1)	200	mW
TJ	Maximum Junction Temperature	150	°C
θ_{JA}	Thermal Resistance	333	°C/W
T _{stg}	Operating Temperature Range (free-air)	-40 to 125	°C
T _{stg}	Storage Temperature	-65 to 150	°C
	Mounting Temperature (Infrared or Convection – 20 sec)	260	°C
V _{ESD}	Machine Model Human Body Model	300 2000	V

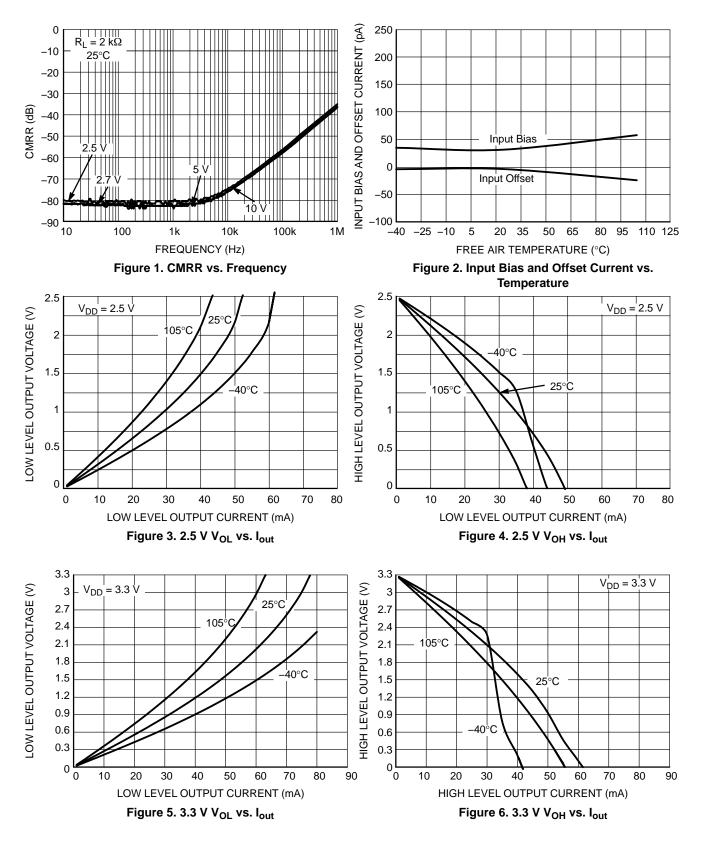
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

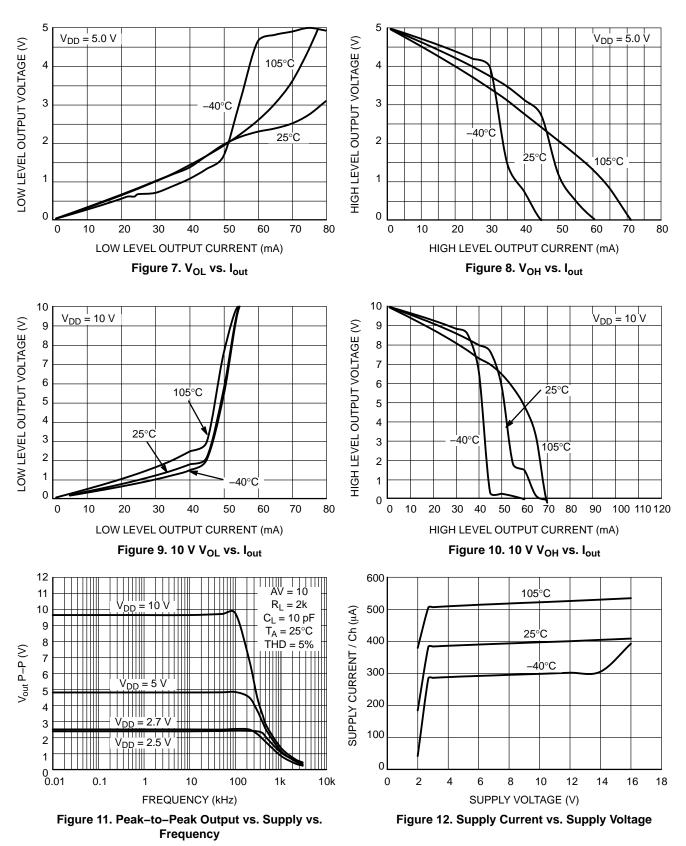
 Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

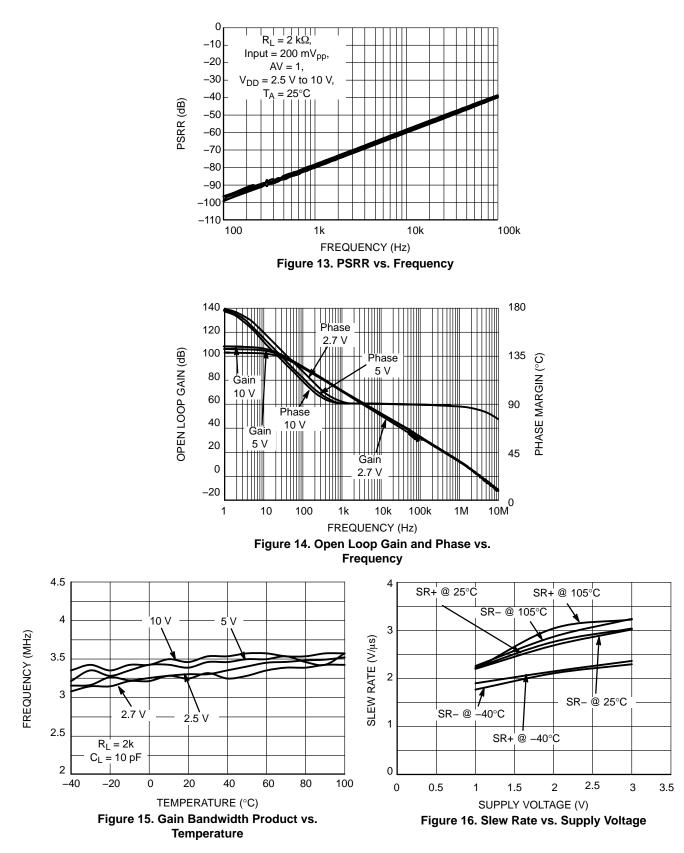
DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and ± 5 V, T_A = 25°C, R_L \geq 10 k Ω unless otherwise noted)

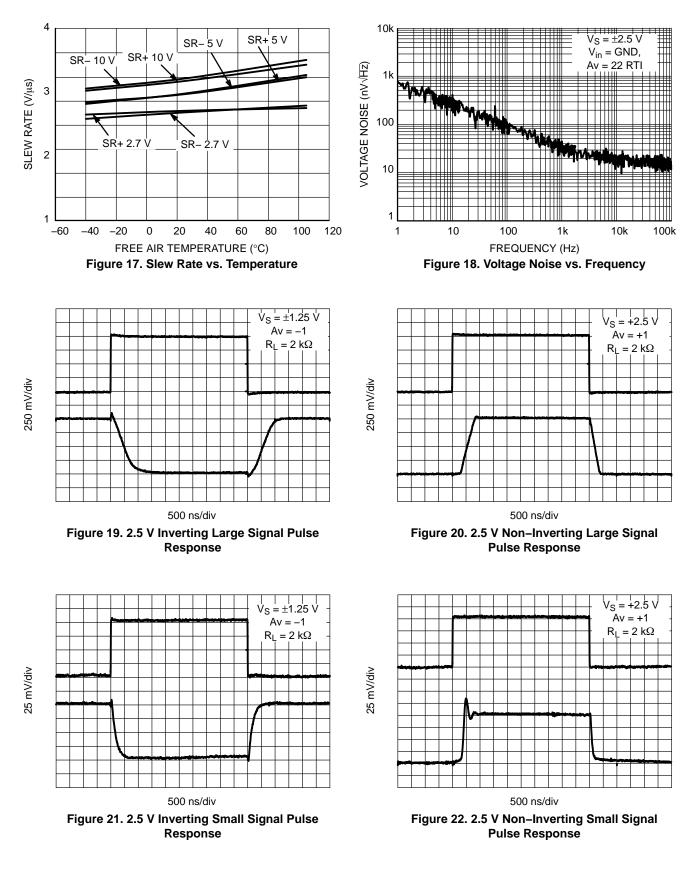
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	VIC = V _{DD} /2, V _O = V _{DD} /2, R _L = 10 k Ω , R _S = 50 Ω			0.5	5.0	mV
(NCS2004)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				7.0	
Input Offset Voltage	V _{IO}	$_{\rm D}$ VIC = V _{DD} /2, V _O = V _{DD} /2, R _L = 10 kΩ, R _S = 50 Ω				3.0	mV
(NCS2004A)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				5.0	
Offset Voltage Drift	ICV _{OS}	VIC = $V_{DD}/2$, $V_O = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$, R_S	; = 50 Ω		2.0		μV/°C
Common Mode	CMRR	0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	V _{DD} = 2.5 V	55	94		dB
Rejection Ratio		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		52			
		0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	V _{DD} = 5 V	65	130		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		62			
		0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	$V_{DD} = \pm 5 V$	69	140		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		66			
Power Supply Rejection Ratio	PSRR	V_{DD} = 2.5 V to 16 V, VIC = $V_{DD}/2$, No Load		70	135		dB
Rejection Ratio		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		65			
Large Signal Voltage Gain	A _{VD}	$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	V _{DD} = 2.5 V	90	130		dB
Voltage Gall		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		76			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	V _{DD} = 3.3 V	92	123		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		76			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	V _{DD} = 5 V	95	127		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		86			
		$V_{O(pp)} = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$	$V_{DD} = \pm 5 V$	95	130		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		90			

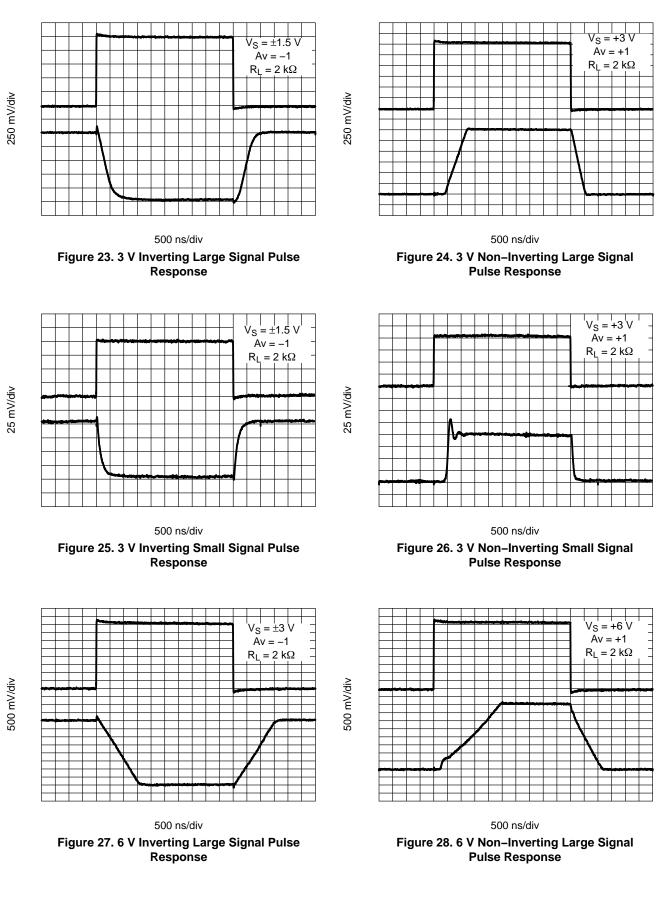
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Bias Current	I _B	$V_{DD} = 5 V, VIC = V_{DD}/2, V_{O} = V_{DD}/2,$	$T_A = 25^{\circ}C$		45	150	pА
		R _S = 50 Ω	T _A = 125°C			1000	
Input Offset Current	I _{IO}	$V_{DD} = 5 V, VIC = V_{DD}/2, V_{O} = V_{DD}/2,$	$T_A = 25^{\circ}C$		45	150	pА
		R _S = 50 Ω	T _A = 125°C			1000	
Differential Input Resistance	r _{i(d)}				1000		GΩ
Common-mode Input Capacitance	C _{IC}	f = 21 kHz			8.0		pF
Output Swing	V _{OH}	$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 2.5 V	2.35	2.43		V
(High–level)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		2.28			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 3.3 V	3.15	3.21		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		3.00			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 5 V	4.8	4.93		V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.75			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	$V_{DD} = \pm 5 V$	4.92	4.96		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.9			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 2.5 V	1.7	2.14		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		1.5			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 3.3 V	2.5	2.89		
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		2.1			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 5 V	4.5	4.68		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.35			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	$V_{DD} = \pm 5 V$	4.7	4.78		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.65			
Output Swing	V _{OL}	$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 2.5 V		0.03	0.15	
(Low-level)		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				0.22	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 3.3 V		0.03	0.15	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.22	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 5 V		0.03	0.1	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.15	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	$V_{DD} = \pm 5 V$		0.05	0.08	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.1	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	V _{DD} = 2.5 V		0.15	0.7	V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				1.1	-
		$VIC = V_{DD}/2$, $I_{OL} = -5 \text{ mA}$	V _{DD} = 3.3 V		0.13	0.7	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	7			1.1	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	V _{DD} = 5 V		0.13	0.4	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.5	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	$V_{DD} = \pm 5 V$		0.16	0.3	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	1			0.35	

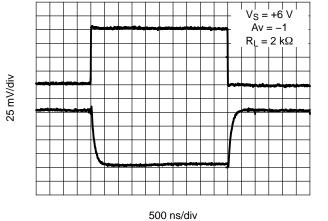

DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and ± 5 V, T_A = 25°C, R_L \geq 10 k Ω unless otherwise noted)

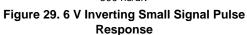

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Current	Ι _Ο	V_{O} = 0.5 V from rail, V_{DD} = 2.5 V	Positive rail		4.0		mA
			Negative rail		5.0		
		$V_{O} = 0.5 \text{ V}$ from rail, $V_{DD} = 5 \text{ V}$	Positive rail		7.0		
			Negative rail		8.0		
		$V_{O} = 0.5 \text{ V}$ from rail, $V_{DD} = 10 \text{ V}$	Positive rail		13		
			Negative rail		12		
Power Supply	I _{DD}	$V_{O} = V_{DD}/2$	V _{DD} = 2.5 V		380	560	μA
Quiescent Current			V _{DD} = 3.3 V		385	620	
			V _{DD} = 5 V		390	660	
			V _{DD} = 10 V		400	800	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				1000	

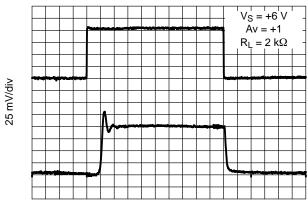
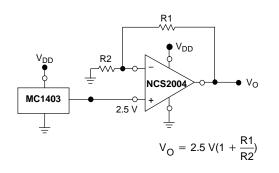

DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and \pm 5 V, T_A = 25°C, R_L ≥ 10 k Ω unless otherwise noted)


AC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 5 V, & \pm 5 V, T_A = 25°C, and R_L \geq 10 k Ω unless otherwise noted)


Parameter	Symbol	Conditions			Тур	Max	Unit
Unity Gain Bandwidth	UGBW F	$R_L = 2 k\Omega$, $C_L = 10 pF$	V _{DD} = 2.5 V		3.2		MHz
			V _{DD} = 5 V to 10 V		3.5		
Slew Rate at Unity	SR	$V_{O(pp)} = V_{DD}/2, R_{L} = 10 \text{ k}\Omega, C_{L} = 50 \text{ pF}$	V _{DD} = 2.5 V	1.35	2.0		V/μS
Gain		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		1			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}$	V _{DD} = 5 V	1.45	2.3		
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		1.2			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}$	$V_{DD} = \pm 5 V$	1.8	2.6		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		1.3			
Phase Margin	θ_{m}	$R_L = 2 k\Omega, C_L = 10 pF$			45		0
Gain Margin		$R_L = 2 k\Omega$, $C_L = 10 pF$			14		dB
Settling Time to 0.1%	t _S	V-step(pp) = 1 V, AV = -1, R _L = 2 k Ω , C _L = 10 pF	V _{DD} = 2.5 V		2.9		μS
			$V_{DD} = 5 V, \pm 5 V$		2.0		
Total Harmonic	THD+N	THD+N $V_{DD} = 2.5 V, V_{O(pp)} = V_{DD}/2, R_L = 2 k\Omega, f = 10 kHz$	AV = 1		0.004		%
Distortion plus Noise			AV = 10		0.04		-
			AV = 100		0.3		
		$V_{DD} = 5 V, \pm 5 V, V_{O(pp)} = V_{DD}/2,$	AV = 1		0.004		
		$R_L = 2 k\Omega$, f = 10 kHz ^(rr)	AV = 10		0.04		
			AV = 100		0.03		
Input–Referred	e _n	f = 1 kHz	-		30		nV/√Hz
Voltage Noise		f = 10 kHz			20		1
Input–Referred Current Noise	i _n	f = 1 kHz			0.6		fA/√Hz





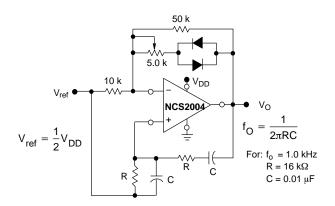
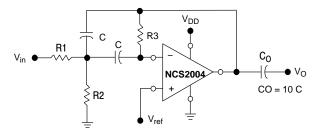
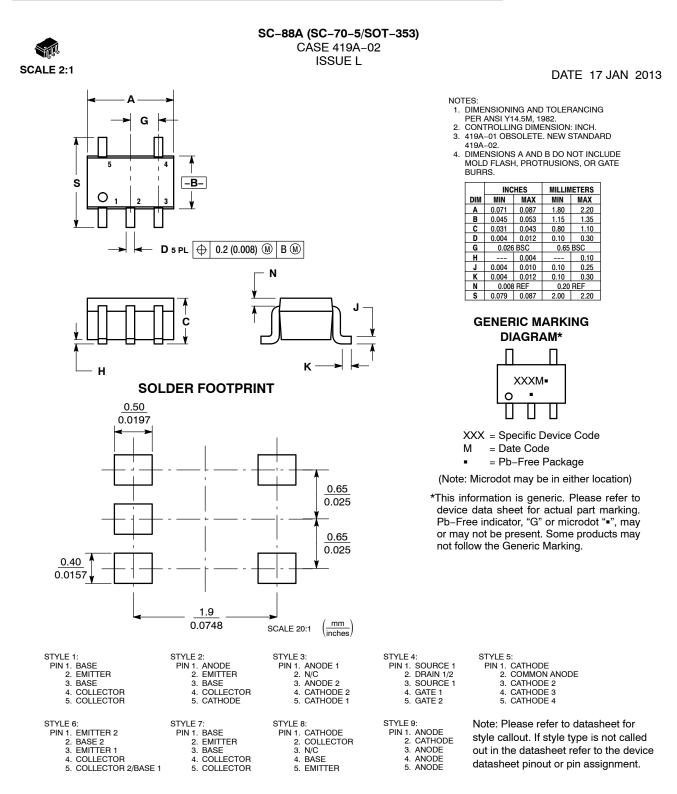


Figure 30. 6 V Non–Inverting Small Signal Pulse Response


APPLICATIONS

R2 Hysteresis VOH R1 Vo Vref 4 NCS2004 Vo Vin (VOL VinL VinH V_{ref} $V_{in}L = \frac{R1}{R1 + R2} \quad (V_{OL} - V_{ref}) + V_{ref}$
$$\begin{split} V_{in}H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{ref})+V_{ref} \\ H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{OL}) \end{split}$$

Figure 33. Comparator with Hysteresis

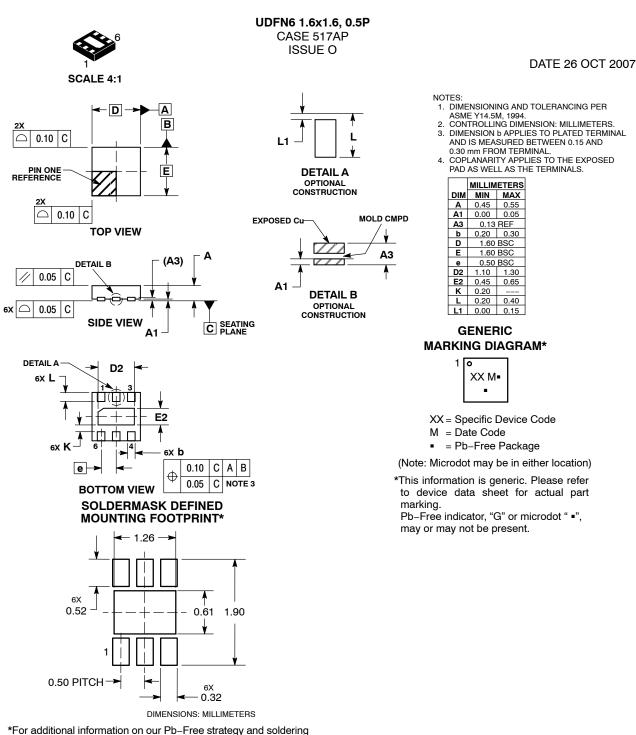

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value f_o, C_Q
Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, ((Q_O f_O)/BW) < 0.1 where f_o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 34. Multiple Feedback Bandpass Filter



DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SC-88A (SC-70-5/SOT-35	PAGE 1 OF						

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON25711D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	6 PIN UDFN, 1.6X1.6, 0.5P PAG		PAGE 1 OF 1			
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG