ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

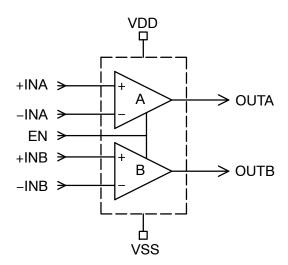
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Dual Operational Amplifier, 7 MHz Bandwidth with Shutdown

NCS20282

The NCS20282 high precision op amp features a wide bandwidth along with shutdown. These amplifiers provide low bias current useful for transimpedance applications. The wide bandwidth eases the design of active filters. The NCS20282 is specified for operation from -40° C to $+125^{\circ}$ C.

Features


High Bandwidth: 7 MHz typicalLow Bias Current: 50 pA typical

Rail-to-Rail Input/Output
Shutdown Current: 1 μA max
Offset Voltage: 1.5 mV max
Offset Drift: 10 μV/°C max
Supply Voltage: 2.5 V to 5.5 V

 These Devices are Pb-free, Halogen Free/BFR Free and are RoHS Compliant

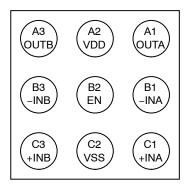
Typical Applications

- Transducer Applications
- Sensor Conditioning
- Medical Instrumentation
- Impedance Sensing

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM


AAA AYW

AAA = Specific Device Code A = Assembly Location

Y = Year W = Work Week

(Note: Microdot may be in either location)

PIN CONNECTIONS

Package Bottom View (Bump Up)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

 Table 1. ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature, unless otherwise stated.

Parameter	Rating	Unit V	
Supply Voltage (VDD- VSS)	7		
INPUT AND OUTPUT PINS	•		
Input Voltage (Note 1)	(V _{SS} – 0.5) to 7	V	
Input Current (Note 1)	±5	mA	
Output Pin Voltage, Disabled	7	V	
Output Short Circuit Current (Note 2)	Continuous		
TEMPERATURE			
Operating Temperature	-40 to +125	°C	
Storage Temperature	−65 to +150	°C	
Junction Temperature	+150	°C	
ESD RATINGS (Note 3)			
Human Body Model (HBM)	2000	V	
Charged Device Model (CDM)	1000	V	
OTHER RATINGS			
Latch-up Current (Note 4)	100	mA	
MSL	Level 1		
	•		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. The input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5 mA.
- Short-circuit to ground.
- This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001-2017 ESD Charged Device Model tested per JEDEC standard JS-002-2014
- 4. Latch-up Current tested per JEDEC standard: JESD78

Table 2. THERMAL INFORMATION

Parameter	Symbol	Cu Area mm²	1.0 oz	2.0 oz	Unit
Thermal Resistance	Θ_{JA}	10	301	263	°C/W
Junction to Ambient		25	263	230	1
		40	246	215	
		80	229	204	
		140	220	196	
		250	211	188	
		350	206	183	
		500	200	179	
		650	197	175	1
		800	194	173	

NOTE: Four layer JSEC JESD51-7

Table 3. OPERATING CONDITIONS

Parameter	Symbol	Range	Units
Supply Voltage (V _{DD} – V _{SS})	V _S	2.5 to 5.5	V
Specified Operating Temperature Range	T _A	-40 to +125	°C
Input Common Mode Voltage Range	V_{CM}	V _{SS} to V _{DD}	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS: $V_S = 2.5 \text{ V}$ to 5.5 V At $T_A = +25^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$, $V_{CM} = V_{OUT} =$ midsupply, Enable input connected to V_{DD} , unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, guaranteed by characterization and/or design.

Parameter Symbol Conditions		Min	Тур	Max	Units			
INPUT CHARACTERISTICS								
Offset Voltage		Vos				300	1500	μV
Offset Voltage Drift vs Temp		$\Delta V_{OS}/\Delta T$				2	10	μV/°C
Input Bias Current (Note 5)		I _{IB}				50	800	pА
Input Offset Current		Ios				10		pА
Input Common-Mode Voltage	Range	V_{CM}				V_{SS} to V_{DD}		V
Common Mode Rejection Rat	io	CMRR	$V_{CM} = -0.1V \text{ to}$	(V _{DD} +0.1V)	66	86		dB
Input Resistance		R _{IN}	Differe	ntial		10		GΩ
			Common	n Mode		10		1
Input Capacitance		C _{IN}	Differe	ential		2		pF
			Common	n Mode		5		
OUTPUT CHARACTERISTIC	S							
Open Loop Voltage Gain		A _{VOL}	0.4 V ≤ V _{OUT} ≤	V _{DD} – 0.4 V	96	116		dB
Closed Loop Output Impedan	ce	Z _{OUT_CL}	See Figu	ure 23		See Figure 23		Ω
Output Voltage High, Referen	ced to V _{DD}	V _{OH}				V _{DD} -3	V _{DD} -10	mV
Output Voltage Low, Reference	ed to V _{SS}	V _{OL}				V _{SS} +6	V _{SS} +10	mV
Short Circuit Current (Note 5)		I _{SC}	Sinking C	Current		10	15	mA
			Sourcing	Current		10	15	
Capacitive Load Drive (Note 5	5)	C_{L}				100	300	pF
DYNAMIC PERFORMANCE								
Gain Bandwidth Product (Note	e 5)	GBW	$V_S = 3$ $R_L = 10 \text{ k}\Omega$, C	3 V; C _L = 100 pF	5.4	7		MHz
Gain Margin		A _M	C _L = 10	00 pF		50		dB
Phase Margin		Ψ_{M}	C _L = 10	00 pF		55		0
Slew Rate		SR	A _V =	+1		5		V/μs
Overload Recovery Time		t _{OR}	V _{IN} X A _\	/ > V _S		1		μs
NOISE PERFORMANCE								
Voltage Noise Density		e _N	f _{IN} = 10) kHz		20		nV/√ Hz
Current Noise Density		i _N	f _{IN} = 1	Hz		300		fA/√Hz
POWER SUPPLY								
Power Supply Rejection Ratio)	PSRR			90	120		dB
Shutdown Enable Time (Notes 5, 6)		t _{ON}				30	50	μs
Shutdown Disable Time (Note 6)		toff				30		μs
Shutdown Leakage	Input		V _{IN} = V _S +400 mV				500	nA
	Output		V _{OUT} = V _S +1 V				500	1
Enable Input Threshold Voltage		$V_{th(EN)}$	Operating		1.3			V
			Disabled				0.5	
Enable Input Leakage Current		I _{Enable}	Enable = + 5.0 V			1.1		μΑ
			Enable :	= V _{SS}		1.1		
Quiescent Current		IQ	Per Channel	Quiescent		850	1300	μΑ
			No load	Shutdown		0.3	1	

the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{5.} Guaranteed by design and/or characterization
6. Shutdown Disable Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and

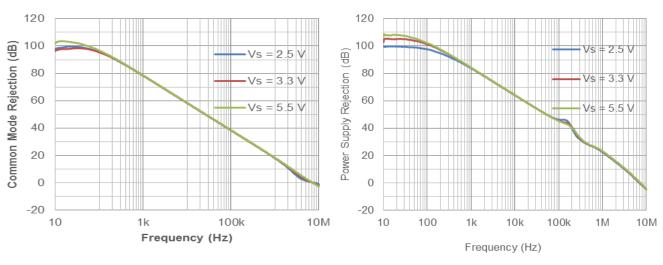


Figure 1. CMRR vs. Frequency

Figure 2. PSRR vs. Frequency

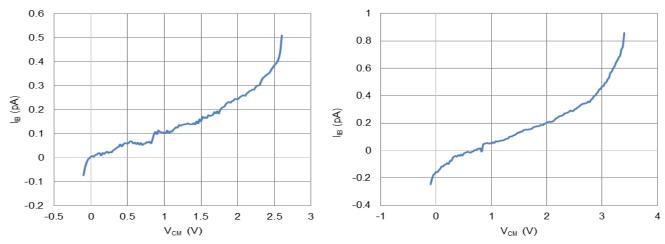


Figure 3. Input Bias Current vs. V_{CM} at $V_S = 2.5 \ V$

Figure 4. Input Bias Current vs. V_{CM} at $V_S = 3.3 \text{ V}$

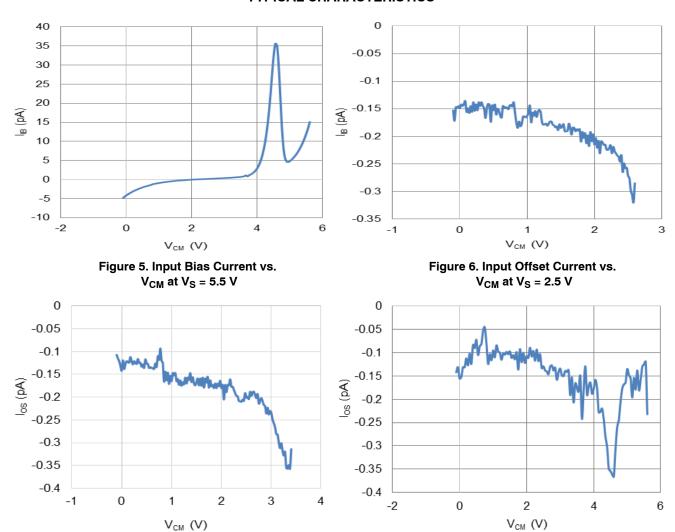


Figure 7. Input Offset Current vs. V_{CM} at $V_S = 3.3 \text{ V}$

Figure 8. Input Offset Current vs. V_{CM} at $V_S = 5.5 \text{ V}$

TYPICAL CHARACTERISTICS

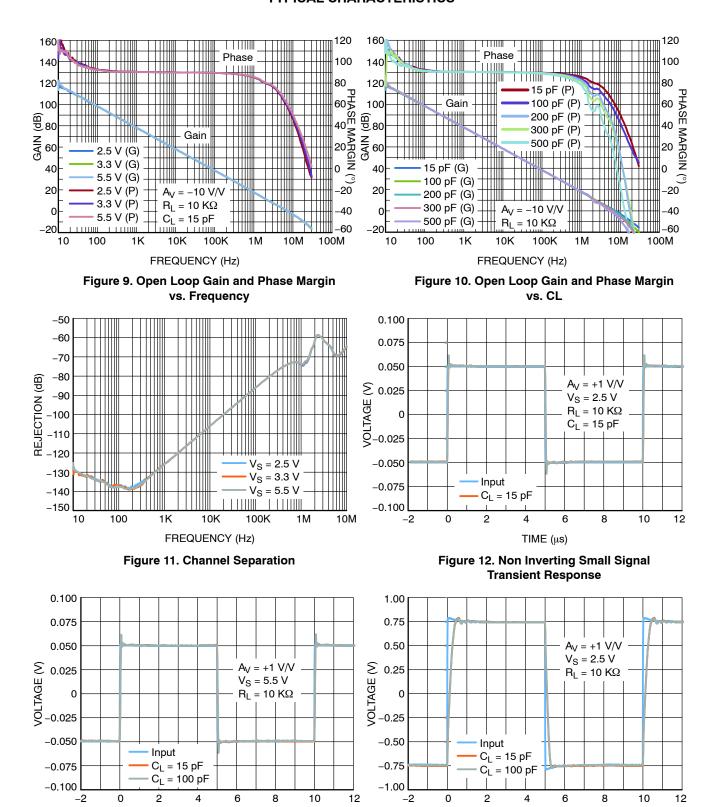
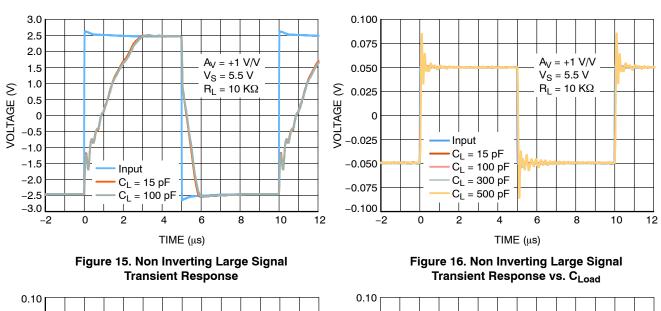



Figure 13. Non Inverting Small Signal Transient Response

TIME (μs)

Figure 14. Non Inverting Large Signal Transient Response

TIME (µs)

0.08 0.06 0.04 **VOLTAGE (V)** $A_V = -1 \text{ V/V}$ 0.02 C_L = 15 pF $V_S = 2.5 V$ $C_L = 100 \text{ pF}$ R_L = 10 $K\Omega$ -0.02 -0.04-0.06 -0.08-0.10 0 -2 2 4 6 8 10 12 TIME (µs)

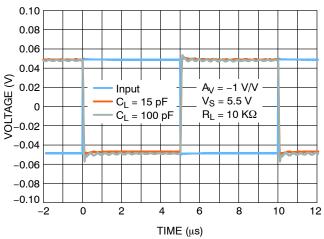


Figure 17. Inverting Small Signal Transient Response

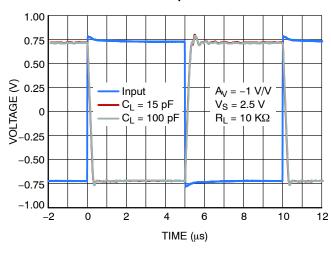


Figure 19. Inverting Large Signal Transient Response

Figure 18. Inverting Small Signal Transient Response

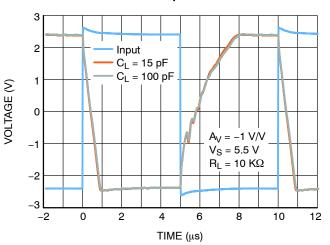


Figure 20. Inverting Large Signal Transient Response

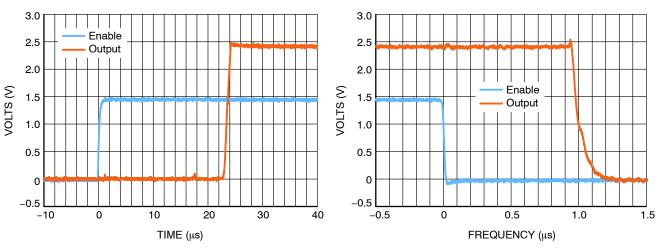


Figure 21. Enable Turn-On Time

Figure 22. Disable Turn-Off Time

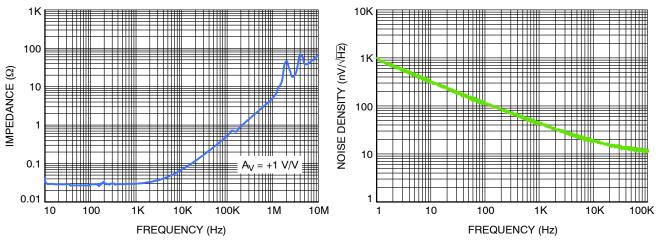


Figure 23. Closed Loop Output Impedance

Figure 24. Voltage Noise Density vs. Frequency

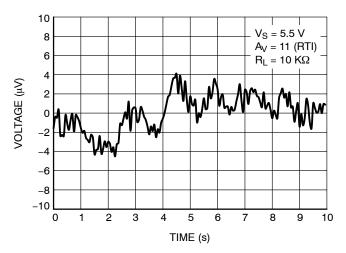
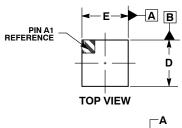
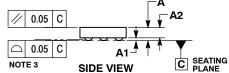
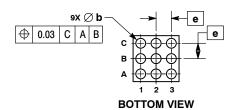


Figure 25. 0.1 Hz to 10 Hz Noise


DEVICE ORDERING INFORMATION


Device	Marking	Bump Type	Case Outline	Package	Shipping [†]
NCS20282FCTTAG	AAA	Sn Plate	567UW	WLCSP-9 (Pb-Free)	5000 / Tape & Reel
NCS20282FCSTAG* (In Development)	AAA	SAC 405	567YD	WLCSP-9 (Pb-Free)	5000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

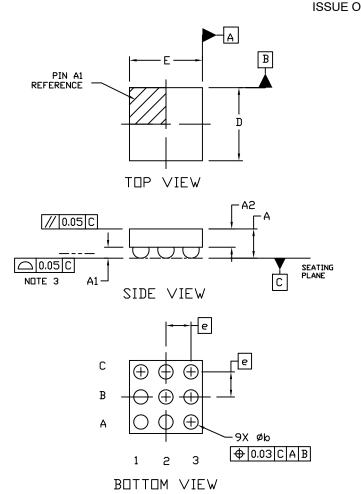
PACKAGE DIMENSIONS

WLCSP9, 1.02x1.02x0.33 CASE 567UW **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

	MILLIMETERS						
DIM	MIN	MIN NOM MAX					
Α			0.33				
A1	0.04	0.06	0.08				
A2	0.23 REF						
b	0.180 0.200 0.220						
D	0.99	1.02	1.05				
E	0.99	1.02	1.05				
е	0.35 BSC						

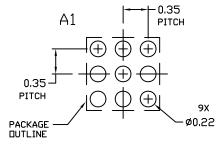
RECOMMENDED SOLDERING FOOTPRINT*



DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


WLCSP9, 1.02x1.02x0.441 CASE 567YD

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS 2.
- COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

	MILLIMETERS			
DIM	MIN. NOM. MAX.			
Α	0.441			
A1	0.133	0.153	0.173	
A2	0.255 REF			
b	0.183 0.203 0.223			
D	0.99	1.02	1.05	
E	0.99	1.02	1.05	
е	0.35 BSC			

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG