Operational Amplifier, 1.0 A, Dual

The NCS2372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.

Features

- Output Current to 1.0 A
- Slew Rate of 1.3 V/μs
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion
- These Devices are Pb-Free and are RoHS Compliant

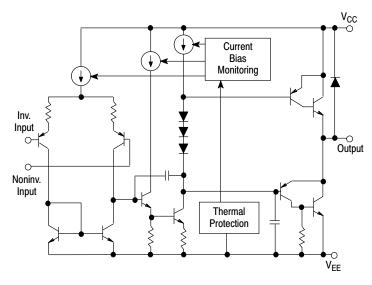
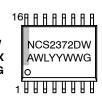
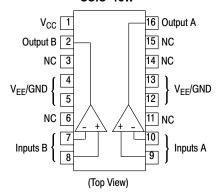


Figure 1. Representative Block Diagram



ON Semiconductor®

http://onsemi.com



A = Assembly Location
WL = Wafer Lot

YY = Year
WW = Work Week
G = Pb-Free Package

PIN CONNECTIONS

SOIC-16W

ORDERING INFORMATION

Device	Package	Shipping [†]
NCS2372DWR2G	SOIC-16W (Pb-Free)	1000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Supply Voltage (from V _{CC} to V _{EE})	V _S	40	V	
Input Differential Voltage Range	V _{IDR}	Note 1	V	
Input Voltage Range	V _{IR}	Note 1	V	
Junction Temperature (Note 2)	T _J	+150	°C	
Operating Temperature Range	T _A	-40 to +125	°C	
Storage Temperature Range	T _{stg}	-55 to +150	°C	
DC Output Current	lo	1.0	Α	
Peak Output Current (Nonrepetitive) > 1 ms Duration < 1 ms Duration (Note 3)	I _(max)	1.5 2.0	А	
Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	80	°C/W	
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	12	°C/W	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.
 When driving inductive loads, negative flyback voltage/current excursions may need to be constrained with Schottky diodes to protect the output drivers.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, R_L connected to ground, T_A = -40° to +125°C.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _{CM} = 0)	V _{IO}				mV
$T_A = +25^{\circ}C$		_	1.0	15	
T _A , T _{low} to T _{high}		-	_	20	
Average Temperature Coefficient of Offset Voltage	$\Delta V_{IO}/\Delta T$	-	20	_	μV/°C
Input Bias Current (V _{CM} = 0)	I _{IB}	-	100	500	nA
Input Offset Current (V _{CM} = 0)	I _{IO}	-	10	50	nA
Large Signal Voltage Gain	A _{VOL}	30	100	-	V/mV
$V_{O} = \pm 10 \text{ V}, R_{L} = 2.0 \text{ k}$					
Output Voltage Swing (I _L = 100 mA)	V _{OH}				V
$T_A = +25^{\circ}C$		14.0	14.2	_	
$T_A = T_{low}$ to T_{high}	.,	13.9	-	-	
$T_A = +25^{\circ}C$	V _{OL}	_	-14.2	-14.0	
$T_A = T_{low}$ to T_{high}		-	_	-13.9	
Output Voltage Swing (I _L = 1.0 A)	V _{OH}				V
$V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25 ^{\circ}\text{C}$		22.5	22.7	_	
$V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = T_{low} \text{ to } T_{high}$		22.5			
$V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25 ^{\circ}\text{C}$	V _{OL}	-	1.3	1.5	
V_{CC} = +24 V, V_{EE} = 0 V, T_A = T_{low} to T_{high}		-	_	1.6	
Input Common Mode Voltage Range	V_{ICR}				V
$T_A = +25^{\circ}C$		V_{EE} to (V_{CC} –1.0)			
$T_A = T_{low}$ to T_{high}		V_{EE} to $(V_{CC}$ –1.3)			
Common Mode Rejection Ratio (R _S = 10 k)	CMRR	70	90	_	dB
Power Supply Rejection Ratio ($R_S = 100 \Omega$)	PSRR	70	90	_	dB
Power Supply Current	I _D				mA
$T_A = +25$ °C		_	8.0	10	
$T_A = T_{low}$ to T_{high}		_	_	14	

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_L \ connected \ to \ ground, \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics	Symbol	Min	Тур	Max	Unit
Slew Rate (V_{in} = -10 V to +10 V, R_L = 2.0 k, C_L = 100 pF) A_V = -1.0, T_A = T_{low} to T_{high}	SR	1.0	1.4	-	V/μs
Gain Bandwidth Product (f = 100 kHz, C_L = 100 pF, R_L = 2.0 k) T_A = 25°C T_A = T_{low} to T_{high}	GBW	0.9 0.7	1.4	- -	MHz
Phase Margin $T_J = T_{low}$ to T_{high} $R_L = 2.0$ k, $C_L = 100$ pF	Фт	_	65	_	Degrees
Gain Margin $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	A _m	_	15	-	dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0$ to 100 kHz	e _n	-	22	-	nV/√Hz
Total Harmonic Distortion $A_V = -1.0$, $R_L = 50 \Omega$, $V_O = 0.5 VRMS$, $f = 1.0 kHz$	THD	-	0.02	-	%

NOTE: In case V_{EE} is disconnected before V_{CC}, a diode between V_{EE} and Ground is recommended to avoid damaging the device.

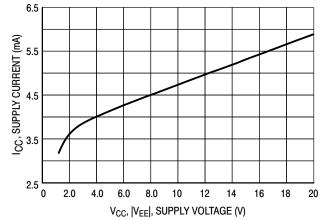


Figure 2. Supply Current versus Supply Voltage with No Load

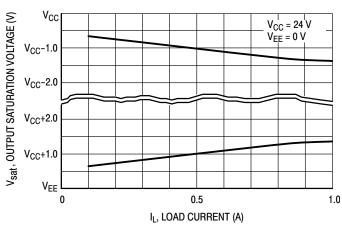


Figure 3. Output Saturation Voltage versus Load Current

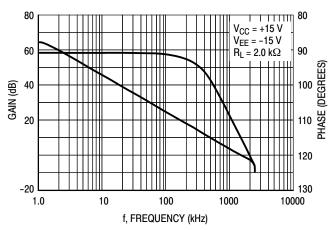


Figure 4. Voltage Gain and Phase versus Frequency

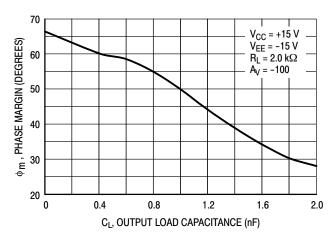


Figure 5. Phase Margin versus Output Load Capacitance

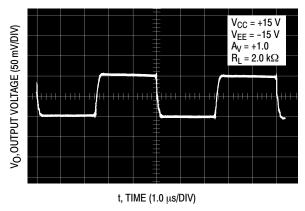


Figure 6. Small Signal Transient Response

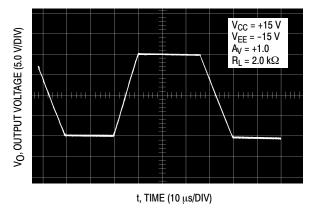


Figure 7. Large Signal Transient Response

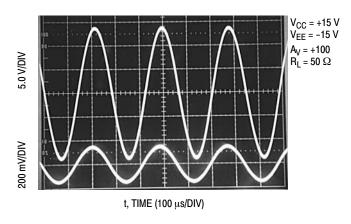


Figure 8. Sine Wave Response

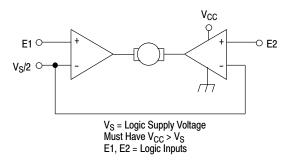
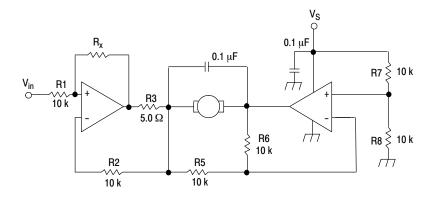
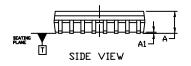
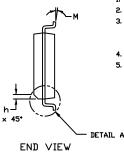



Figure 9. Bidirectional DC Motor Control with Microprocessor-Compatible Inputs

For circuit stability, ensure that $R_X > \frac{2R3 + R1}{R_M}$ where, R_M = internal resistance of motor. The voltage available at the terminals of the motor is: $V_M = 2 (V_1 - \frac{V_S}{2}) + |R_0| \cdot I_M$ where, $|R_0| = \frac{2R3 + R1}{R_X}$ and I_M is the motor current.

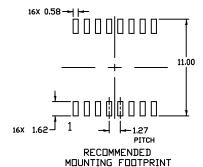
Figure 10. Bidirectional Speed Control of DC Motors



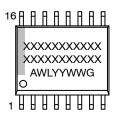

SOIC-16 WB CASE 751G ISSUE E

DATE 08 OCT 2021

SCALE 1:1 **♦** 0.25**₩** B**₩** RRRR PIN 1 --INDICATOR -16X R **♦** 0.25**®** TAS BS TOP VIEW



DETAIL A


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE.

	MILLIMETERS			
DIM	MIN.	MAX.		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	10.15	10.45		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.53 REF			
١	0.50	0.90		
М	0*	7*		

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year ww = Work Week G = Pb-Free Package

DOCUMENT NUMBER:	98ASB42567B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 WB		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG