Video Amplifier, 3-Channel, with High Definition Reconstruction Filters

Description

NCS2563 is a 3-Channel high speed video amplifier with 6th order Butterworth High Definition (HD) reconstruction filters and 6 dB gain.

All three channels can accommodate all Component and RGB video signals. All channels can accept DC or AC coupled signals. If AC coupled, the internal clamps are employed. The outputs can drive both AC and DC coupled 150Ω loads.

It is designed to be compatible with most Bigitalnalog Converters (DAC) embedded in most video processors.

Features

- Three 6th Order High Definition 30 MHz Filter
- Internally Fixed Gain $=6 \mathrm{~dB}$
- Transparent Input Clamping for Each Channel
- DC or AC Coupled Inputs
- DC or AC Coupled Outputs
- Integrated Level Shifter
- Operating Voltage +5 V
- Available in SOIC-8 Package
- These are $\mathrm{Pb}-F r e e ~ D e v i c e s ~$

Applications

- Digital Set-Top Box
- DVD and Video Players
- HDTV
- Video-On-Demand (VOD)

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAM*

$$
\begin{array}{ll}
\mathrm{A} & =\text { Assembly Location } \\
\mathrm{L} & =\text { Wafer Lot } \\
\mathrm{Y} & =\text { Year } \\
\mathrm{W} & =\text { Work Week } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

PINOUT

ORDERING INFORMATION

Device	Package	Shipping †
NCS2563DG	SOIC-8 (Pb-Free)	98 Units / Rail
NCS2563DR2G	SOIC-8 (Pb-Free)	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN FUNCTION AND DESCRIPTION

Pin	Name	Type	Description
1	IN1	Input	Video Input 1 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) - Channel 1
2	IN2	Input	Video Input 2 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) - Channel 2
3	IN3	Input	Video Input 3 for Video Signal featuring a frequency bandwidth compatible with High Definition Video (30 MHz) - Channel 3
4	VCC	Power	Device Power Supply Voltage: +5 V
5	GND	GND	Connected to Ground
6	OUT3	Output	HD Video Output 3 - Channel 3
7	OUT2	Output	HD Video Output 2 - Channel 2
8	OUT1	Output	HD Video Output 1 - Channel 1

ATTRIBUTES

Characteristics	Value
ESD	
Human Body Model	All Pins (Note 1)
Machine Model	Pins 1 to 5 (Note 2)

1. Human Body Model (HBM): R=1500 $\Omega, C=100 \mathrm{pF}$
2. Machine Model (MM)
3. For additional information, see Application Note AND8003/D.

Figure 1. Block Diagram

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltages	V_{CC}	$-0.35 \leq \mathrm{V}_{\mathrm{CC}} \leq$ 5.5	Vdc
Input Voltage Range	V_{I}	$-0.3 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Input Differential Voltage Range	V_{ID}	$\mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Output Current	I_{O}	50	mA
Maximum Junction Temperature (Note 4)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	$($ See Graph$)$	mW
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {日JA }}$	112.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
4. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{\mathrm{J}}\right)$ is not exceeded.

Maximum Power Dissipation

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is $150^{\circ} \mathrm{C}$. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.

Figure 2. Power Dissipation vs Temperature

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0.1 \mu \mathrm{~F}\right.$ AC coupled inputs, $\mathrm{R}_{\text {source }}=37.5 \Omega, 220 \mu \mathrm{FAC}$ coupled outputs into 150Ω load, referenced to 400 kHz , unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
V_{CC}	Operating Voltage Range		4.75	5	5.25	V
I_{CC}	Power Supply Current			22	33	mA
$\mathrm{~V}_{\text {IN }}$	Input Common Mode Voltage Range		GND		1.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage			2.8		V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage			280		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} C \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0.1 \mu \mathrm{FAC}\right.$ coupled inputs, $\mathrm{R}_{\text {source }}=37.5 \Omega, 220 \mu \mathrm{~F} \mathrm{AC}$ coupled outputs into 150Ω load, referenced to 400 kHz , unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
AVOL	Voltage Gain (Note 5)	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$	5.8	6.0	6.2	dB
BW	Bandwidth of Low Pass Filter	$\begin{aligned} & -1 \mathrm{~dB} \\ & -3 \mathrm{~dB} \end{aligned}$	23	$\begin{aligned} & 30 \\ & 33 \end{aligned}$		MHz
A_{R}	Attenuation (Stopband Reject)	$\begin{aligned} & \mathrm{f}=44.25 \mathrm{MHz} \\ & \mathrm{f}=74.25 \mathrm{MHz} \end{aligned}$	28	$\begin{gathered} \hline 14.5 \\ 36 \end{gathered}$		
dG	Differential Gain	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.2		\%
dP	Differential Phase	$\mathrm{A}_{V}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.1		。
THD	Total Harmonic Distortion	$\begin{aligned} & V_{\text {OUT }}=1.4 \mathrm{~V}_{\text {PP, }} \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}_{\text {PP, }} \mathrm{f}=15 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}_{\text {PP, }} \mathrm{f}=22 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.4 \\ & 1.2 \end{aligned}$		\%
$\mathrm{X}_{\text {talk }}$	Channel-to-Channel Crosstalk	$\mathrm{V}_{\text {IN }}=1.4 \mathrm{~V}_{\text {PP, }} \mathrm{f}=1 \mathrm{MHz}$		60		dB
SNR	Signal to Noise Ratio* (Note 6)	100\% White Signal, 100 kHz to 30 MHz		65		dB
$\mathrm{t}_{\text {PD }}$	Propagation Delay	Input to Output		20		ns
$\Delta \mathrm{Tg}$	Group Delay Variation*	100 kHz to 30 MHz		6		ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
*Guaranteed by design
5. 100% of tested IC fit to the bandwidth tolerance.
6. $\mathrm{SNR}=20 \times \log (714 \mathrm{mV} / \mathrm{RMS}$ noise $)$

TYPICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega, 0.1 \mu \mathrm{~F}$ AC-Coupled Inputs, $220 \mu \mathrm{~F}$ AC-Coupled Outputs with 150Ω

Figure 3. Gain vs. Frequency

Figure 4. Attenuation

Figure 5. Flatness Bandwidth 0.1 dB

Figure 6. PSRR vs. Frequency (No Bypass Capacitor)

Figure 7. Crosstalk vs. Frequency, CH2/CH3 (100 $\mu \mathrm{F}$ AC-Coupled Input, DC-Coupled Output)

TYPICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega, 0.1 \mu \mathrm{~F}$ AC-Coupled Inputs, $220 \mu \mathrm{~F}$ AC-Coupled Outputs with 150Ω

Figure 8. Small Signal Step Response
$T_{r}=T_{f}=1 \mathrm{~ns}$

Figure 10. Propagation Delay vs. Time

APPLICATIONS INFORMATION

The NCS2563 triple video driver has been optimized for High Definition video applications covering the requirements of the standards $720 \mathrm{p}, 1080 \mathrm{i}$ and related (RGB). All the 3 channels feature the same specifications and similar behaviors guaranteed by a high channel-to-channel crosstalk isolation (down to 60 dB at 1 MHz). Each channel provides an internal voltage-to-voltage gain of 2 from its input to its output reducing by the way the number of external components usually needed in the case of some discrete approaches (using stand-alone op amps). An internal level shifter is employed shifting up the output voltage by adding an offset of about 280 mV . This avoids sync pulse clipping and allows

DC-coupled output to the 150Ω video load. In addition, the NCS2563 integrates a $6^{\text {th }}$ order Butterworth filter per channel with a 3 dB frequency bandwidth of 30 MHz . This allows rejecting out the aliases or unwanted over-sampling effects produced by the video DAC. It works the same way for DVD recorders using ADC, this anti-aliasing filter (reconstruction filter) will avoid picture quality issue and will help also to filter out parasitic signals caused by EMI interference.

A built-in diode-like clamp is used into the chip for each channel to support AC-coupled mode of operation. The clamp is active when the input signal goes below 0 V .

Figure 11. AC-Coupled Inputs and Outputs

Figure 11 shows an example for which the external video source coming from the DAC is AC-coupled at the input and output. But thanks to the built-in transparent clamp and level shifter the device can operate in different configuration modes depending essentially on the DAC output signal level High and Low and how it fits the input common mode voltage of the video driver. When the configuration is DC-Coupled at the Inputs and Outputs the $0.1 \mu \mathrm{~F}$ and $220 \mu \mathrm{~F}$ coupling capacitors are no longer used, the clamps are in that case inactive; this configuration has the big advantage of being relatively low cost with the use of less external components.

The input is AC-coupled if the input-signal amplitude goes over the range 0 V to 1.4 V or if the video source requires a coupling. In some circumstances it may be necessary to auto-bias signals by the addition of a pull-up and pull-down resistor or only pullup resistor (Typical $7.5 \mathrm{M} \Omega$ combined with the internal $800 \mathrm{k} \Omega$ pulldown) making the clamp inactive.
The output AC-coupling configuration has the advantage of eliminating DC ground loop with the drawback of making the device more sensitive to video line or field tilt issues in the case of a too low output coupling capacitor. In some cases it may be necessary to increase the nominal $220 \mu \mathrm{~F}$ capacitor value.

Figure 12. Typical Application Circuit

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Amplifiers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LT1193CN8 LT6552IDD\#PBF ADA4856-3YCPZ-R7 LT1253CN8\#PBF ADA4859-3ACPZ-R7 AD829SQ/883B AD8001ANZ AD8001AQ
AD8001AR AD8001ARTZ-REEL7 AD8002ARMZ AD8011ANZ AD8072ARMZ AD8072JNZ AD810ANZ AD8123ACPZ
AD8123ACPZ-R7 AD812ANZ AD813ANZ AD8141ACPZ-R2 AD818ANZ AD828ANZ AD829JNZ AD829SQ AD8134ACPZ-R2 AD8134ACPZ-REEL7 ADA4310-1ARHZ ADA4310-1ARHZ-R7 ADA4433-1BCPZ-R2 ADA4433-1BCPZ-R7 ADA4433-1WBCPZ-R7 ADA4853-2YCPZ-R2 ADA4853-3YRUZ ADA4859-3ACPZ-R2 ADA4310-1ACPZ-R2 AD8073JRZ AD8023ARZ AD813ARZ-14 AD8013ARZ-14 AD813ARZ-14-REEL7 AD8145YCPZ-R7 AD8143ACPZ-REEL7 AD8372ACPZ-R7 ADA4853-2YCPZ-RL7

AD8002ARZ-R7 AD8072JRZ AD8001ARZ AD8002ARZ AD812ARZ-REEL7 AD818ARZ-REEL7

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

