Four-Channel Video Driver with Selectable SD / HD Reconstruction Filters

The NCS2564 is a 4-channel high speed video driver with 6th order Butterworth Reconstruction filters on each channel. A first set of 3-channel has selectable Standard Definition (SD) / High Definition (HD) filters, one per channel. A fourth channel offers an extra filter driver for driving CVBS-type video signal. The NCS2564 is in fact a combination of a triple $\mathrm{SD} / \mathrm{HD}$ video driver plus a single CVBS video driver.

It is designed to be compatible with Digital-to-Analog Converters (DAC) embedded in most video processors.

To further reduce power consumption, 2 enable pins are provided one for the triple driver and another one for the single driver. One pin allows selecting the filter frequency of the triple driver. All channels can accept DC- or AC-coupled signals. In case of AC-coupled inputs, the internal clamps are enabled. The outputs can drive both AC and DC coupled 150Ω loads.

Features

- 3-Channel with per Channel a Selectable Sixth-Order Butterworth 8/34 MHz Filter
- One CVBS Driver Including 6th Order Butterworth 8 MHz Filter
- Transparent Clamp
- Internal Fixed Gain: $6 \mathrm{~dB} \pm 0.2$
- Integrated Level Shifter
- AC- or DC-Coupled Inputs and Outputs
- Low Quiescent Current
- Shutdown Current $42 \mu \mathrm{~A}$ Typical (Disabled)
- Each channel Capable to Drive 2 by 150Ω Loads
- Wide Operating Supply Voltage Range: +4.7 V to +5.3 V
- 8 kV ESD Protection (IEC61000-4-2 Compatible)
- TSSOP-14 Package
- These are Pb -Free Devices

Typical Application

- Set Top Box Decoder
- DVD Player / Recorder
- HDTV

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
NCS2564DTBR2G	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. NCS2564 Block Diagram

PIN DESCRIPTION

Pin No.	Name	Type	Description
1	CVBS_IN	Input	Video Input for Video Signal featuring a frequency bandwidth compatible with NTSC / PAL / SECAM Video (8 MHz) - CVBS Channel
2	CVBS_EN	Input	CVBS Channel Enable /Disable Function: Low = Enable, High = Disable. When left open the default state is Enable.
3	VCC	Power	Power Supply / 4.7 V to 5.3 V
4	SD/HD	Input	Pin of selection enabling the Standard Definition or High Definition Filters (8 MHz / 34 MHz) for channels SD/HD - when Low SD filters are selected, when High HD filters are selected.
5	SD/HD_IN1	Input	Selectable SD or HD Video Input 1 - SD/HD Channel 1
6	SD/HD_IN2	Input	Selectable SD or HD Video Input 2 - SD/HD Channel 2
7	SD/HD_IN3	Input	Selectable SD or HD Video Input 3 - SD/HD Channel 3
8	SD/HD_OUT3	Output	SD/HD Video Output 3 - SD/HD Channel 3
9	SD/HD_OUT2	Output	SD/HD Video Output 2 - SD/HD Channel 2
10	SD/HD_OUT1	Output	SD/HD Video Output 1 - SD/HD Channel 1
11	SD/HD_EN	Input	SD/HD Channel Enable/Disable Function: Low = Enable, High = Disable. When left open the default state is Enable.
12	GND	Ground	Ground
13	GND	Ground	Ground
14	CVBS_OUT	Output	CVBS Video Output - CVBS Channel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages	V_{CC}	$-0.3 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5$	Vdc
I / O Voltage Range	V_{IO}	$-0.3 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Input Differential Voltage Range	V_{ID}	$-0.3 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Vdc
Output Current (Indefinitely) per Channel	I_{O}	40	mA
Maximum Junction Temperature (Note 1)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {日JA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Protection Voltage (IEC61000-4-2)	$\mathrm{V}_{\text {esd }}$	>8000	$\mathrm{~V}^{2}$
ESD HBM - Human Body Model	HBM	4000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{\mathrm{J}}\right)$ is not exceeded.

Maximum Power Dissipation

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is $150^{\circ} \mathrm{C}$. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.

Figure 2. Power Dissipation vs Temperature

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, inputs AC-coupled with $0.1 \mu \mathrm{~F}$, all outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω referenced to 400 kHz ; unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
POWER SUPPLY						
$\mathrm{V}_{\text {CC }}$	Supply Voltage Range		4.7	5.0	5.3	V
I CC	Supply Current	SD Channels Selected + $\mathrm{C}_{\mathrm{vbs}}$ HD Channels Selected $+\mathrm{C}_{\mathrm{vbs}}$		$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	mA
$\mathrm{I}_{\text {SD }}$	Shutdown Current (CVBS_EN and SD/HD_EN High)			42	60	$\mu \mathrm{A}$

DC PERFORMANCE

Vi	Input Common Mode Voltage Range		GND		1.4	$\mathrm{~V}_{\mathrm{PP}}$
V_{IL}	Input Low Level for the Control Pins (2, 4, 11)		0		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Level for the Control Pins (2,4,11)		2.4		$\mathrm{~V}_{\mathrm{CC}}$	V
R_{pd}	Pulldown Resistors on Pins CVBS_EN and SD/HD_EN			250		$\mathrm{k} \Omega$

OUTPUT CHARACTERISTICS

V_{OH}	Output Voltage High Level			2.8		V
$\mathrm{~V}_{\mathrm{OL}}$	Output Voltage Low Level			200		mV
I_{O}	Output Current			40		mA

AC ELECTRICAL CHARACTERISTICS FOR STANDARD DEFINITION CHANNELS (pin numbers (1, 14) (5, 10), (6, 9), (7, 8)) ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, inputs AC-coupled with $0.1 \mu \mathrm{~F}$, all outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω referenced to 400 kHz ; unless otherwise specified, $\overline{\text { SD/HD }}=$ Low)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
Avsd	Voltage Gain	$\mathrm{V}_{\text {in }}=1 \mathrm{~V}$ - All SD Channels	5.8	6.0	6.2	dB
$B^{\text {SD }}$	Low Pass Filter Bandwidth (Note 3)	$\begin{aligned} & -1 \mathrm{~dB} \\ & -3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 8.0 \end{aligned}$		MHz
$A_{\text {RSD }}$	Stop-band Attenuation (Notes 3 and 4)	@ 27 MHz	43	50		dB
$\mathrm{dG}_{\text {SD }}$	Differential Gain Error			0.7		\%
$\mathrm{d} \Phi_{\text {SD }}$	Differential Phase Error			0.7		。
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {out }}=1.4 \mathrm{~V}_{\text {PP }} @ 3.58 \mathrm{MHz}$		0.35		\%
$\mathrm{X}_{\text {SD }}$	Channel-to-Channel Crosstalk	@ 1 MHz and $\mathrm{Vi}_{\mathrm{n}}=1.4 \mathrm{~V}_{\mathrm{PP}}$		-57		dB
$\mathrm{SNR}_{\text {SD }}$	Signal-to-Noise Ratio	NTC-7 Test Signal, 100 kHz to 4.2 MHz (Note 2)		72		dB
$\Delta \mathrm{t}_{\text {SD }}$	Propagation Delay	@ 4.5 MHz		70		ns
$\Delta \mathrm{GD}_{\text {SD }}$	Group Delay Variation	100 kHz to 8 MHz		20		ns

2. $\mathrm{SNR}=20 \times \log (714 \mathrm{mV} / \mathrm{RMS}$ noise)
3. 100% of Tested ICs fit the bandwidth and attenuation tolerance at $25^{\circ} \mathrm{C}$.
4. Guaranteed by characterization.

AC ELECTRICAL CHARACTERISTICS FOR HIGH DEFINITION CHANNELS (pin numbers (5, 10) (6,9), $(7,8)$)
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, inputs AC -coupled with $0.1 \mu \mathrm{~F}$, all outputs AC -coupled with $220 \mu \mathrm{~F}$ into 150Ω referenced to 400 kHz ; unless otherwise specified, $\overline{\mathrm{SD}} / \mathrm{HD}=$ High)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
AVHD	Voltage Gain	$\mathrm{V}_{\text {in }}=1 \mathrm{~V}$ - All HD Channels	5.8	6.0	6.2	dB
$\mathrm{BW}_{\mathrm{HD}}$	Low Pass Filter Bandwidth	-1 dB (Note 6) -3 dB (Note 7)	$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 34 \end{aligned}$		MHz
$A_{\text {RHD }}$	Stop-band Attenuation	@ 44.25 MHz (Note 7) @ 74.25 MHz (Note 6)	33	$\begin{aligned} & 15 \\ & 42 \end{aligned}$		dB
THD HD	Total Harmonic Distortion	$\mathrm{V}_{\text {out }}=1.4 \mathrm{~V}_{\mathrm{Pp}} @ 10 \mathrm{MHz}$ $V_{\text {out }}=1.4 \mathrm{~V}_{\mathrm{PP}} @ 15 \mathrm{MHz}$ $V_{\text {out }}=1.4 \mathrm{~V}_{\mathrm{PP}} @ 20 \mathrm{MHz}$		$\begin{aligned} & \hline 0.4 \\ & 0.6 \\ & 0.8 \end{aligned}$		\%
X_{HD}	Channel-to-Channel Crosstalk	@ 1 MHz and $\mathrm{V}_{\text {in }}=1.4 \mathrm{~V}_{\text {PP }}$		-60		dB
$\mathrm{SNR}_{\mathrm{HD}}$	Signal-to-Noise Ratio	White Signal, 100 kHz to 30 MHz , (Note 5)		72		dB
$\Delta \mathrm{t}_{\mathrm{HD}}$	Propagation Delay			25		ns
$\Delta \mathrm{GD}_{\text {HD }}$	Group Delay Variation from 100 kHz to 30 MHz			10		ns

5. $\mathrm{SNR}=20 \times \log (714 \mathrm{mV} / \mathrm{RMS}$ noise $)$
6. Guaranteed by Characterization.
7. 100% of Tested ICs fit the bandwidth and attenuation tolerance at $25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC-coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 3. SD Normalized Frequency Response

Figure 5. SD Passband Flatness

Figure 7. SD Channel-to-Channel Crosstalk

Figure 4. HD Normalized Frequency Response

Figure 6. HD Passband Flatness

Figure 8. HD Channel-to-Channel Crosstalk

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC-coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 9. SD Normalized Group Delay

Figure 11. SD Propagation Delay

Figure 13. SD Small Signal Response

Figure 10. HD Normalized Group Delay

Figure 12. HD Propagation Delay

Figure 14. HD Small Signal Response

TYPICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC-coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 15. SD Large Signal Response

Figure 16. HD Large Signal Response

Figure 17. SD and HD Vcc PSRR vs.
Frequency

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inputs AC-coupled with $0.1 \mu \mathrm{~F}$, All Outputs AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω Referenced to 400 kHz ; unless otherwise specified

Figure 18. SD Frequency Response and Group Delay

Figure 19. HD Frequency Response and Group Delay

Figure 20. SD Differential Gain

Figure 21. SD Differential Phase

APPLICATIONS INFORMATION

The NCS2564 quad video driver has been optimized for Standard and High Definition video applications covering the requirements of the standards Composite video (CVBS), S-Video, Component Video (480i/525i, 576i/625i, $720 \mathrm{p} / 1080 \mathrm{i}$) and related (RGB). The three SD/HD channels have selectable filters (8 MHz and 34 MHz) for covering either standard definition-like video applications or High Definition video applications. These frequencies are selectable using the pin $\overline{\mathrm{SD}} / \mathrm{HD}$.

In the regular mode of operation each channel provides an internal voltage-to-voltage gain of 2 from input to output. This effectively reduces the number of external components
required as compared to discrete approached implemented with stand alone op amps. An internal level shifter is employed shifting up the output voltage by adding an offset of 200 mV . This prevents sync pulse clipping and allows DC-coupled output to the 150Ω video load. In addition, the NCS2564 integrates a $6^{\text {th }}$ order Butterworth filter for each. This allows rejection of the aliases or unwanted over-sampling effects produced by the video DAC. Similarly for the case of DVD recorders which use an ADC, this anti-aliasing filter (reconstruction filter) will avoid picture quality issue and will aide filtration of parasitic signals caused by EMI interference.

Figure 22. AC-Coupled Configuration at the Input and Output

A built-in diode-like clamp is used into the chip for each channel to support the AC -coupled mode of operation. The clamp is active when the input signal goes below 0 V .
The built-in clamp and level shifter allow the device to operate in different configuration modes depending on the DAC output signal level and the input common mode voltage of the video driver. When the configuration is DC-Coupled at the Inputs and Outputs the $0.1 \mu \mathrm{~F}$ and $220 \mu \mathrm{~F}$ coupling capacitors are no longer used, and the clamps are in that case inactive; this configuration provides a low cost solution which can be implemented with few external components (Figure 23).

The input is AC-coupled when either the input-signal amplitude goes over the range 0 V to 1.4 V or the video source requires such a coupling. In some circumstances it may be necessary to auto-bias signals with the addition of a pullup and pulldown resistors or only pullup resistor (Typical $7.5 \mathrm{M} \Omega$ combined with the internal $800 \mathrm{k} \Omega$ pulldown) making the clamp inactive.

The output AC-coupling configuration is advantageous for eliminating DC ground loop with the drawback of making the device more sensitive to video line or field tilt issues in the case of a too low output coupling capacitor. In
some cases it may be necessary to increase the nominal $220 \mu \mathrm{~F}$ capacitor value.

Shutdown Mode

If the enable pins are left open by default the circuit will be enabled. The Enable pin offers a shutdown function, so the NCS2564 can consequently be disabled when not used. The NCS2564's quiescent current reduces to $42 \mu \mathrm{~A}$ typical during shutdown mode.

DC-Coupled Output

The outputs of the NCS2564 can be DC-coupled to a 150Ω load (Figure 23). This has the advantage of eliminating the AC-coupling capacitors at the output by reducing the number of external components and saving space on the board. This can be a key advantage for some applications with limited space.
The problems of field tilt effects on the video signal are also eliminated providing the best video quality with optimal dynamic or peak-to-peak amplitude of the video signal allowing operating thanks to the built-in level shifter without risk of signal clipping. In this coupling configuration the average output voltage is higher than 0 V and the power consumption can be a little higher than with an AC -coupled configuration.

Figure 23. DC-Coupled Input and Output Configuration

Figure 24. Typical Application

Figure 25. NCS2564 Driving 2 SCARTS Simultaneously

Video Driving Capability

With an output current capability of 40 mA the NCS2564 was designed to be able to drive at least 2 video display loads in parallel. This type of application is illustrated Figure 24. Figure 26 (multiburst) and Figure 27 (linearity) show that the video signal can efficiently drive a 75Ω equivalent load and not degrade the video performance.

Figure 26. Multiburst Test with Two 150Ω Loads

ESD Protection

All the device pins are protected against electrostatic discharge at a level of 4 kV HBM and 8 kV according to IEC61000-4-2. This feature has been considered with a particular attention with ESD structure able to sustain the typical values requested by the systems like Set Top Boxes or Blue-Ray players. This parameter is particularly important for video driver which usually constitutes the last stage in the video chain before the video output connector. The IEC61000-4-2 standard has been used to test our devices in the real application environment. Test methodology can be provided on request.

Figure 27. Linearity Test with Two 150Ω Loads

DIMENSIONS：MILLIMETERS

NOTES：

．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A DOES NOT INCLUDE MOLD FLASH，PROTRUSIONS OR GATE BURRS． FLASH，PROTRUSIONS OR GATE BURRS． MOLD FLASH OR GATE BURRS
4．DIMENSION BDOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION． INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 （ 0.010 ）PER SIDE．
5．DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 （0．003）TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7．DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE－W－．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	－－－	1.20	－－－	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM＊

14 月HBHE日为
XXXX
XXXX
ALYW•
\bigcirc－
渣昰

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
－	$=$ Pb－Free Package

（Note：Microdot may be in either location）
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-F r e e ~ i n d i c a t o r, ~ " ~ G " ~ o r ~ m i c r o d o t ~ " ~ " ", ~$ may or may not be present．

| DOCUMENT NUMBER： | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | TSSOP－14 WB | PAGE 1 OF 1 |

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Amplifiers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LT1193CN8 LT6552IDD\#PBF ADA4856-3YCPZ-R7 LT1253CN8\#PBF ADA4859-3ACPZ-R7 AD829SQ/883B AD8001ANZ AD8001AQ
AD8001AR AD8001ARTZ-REEL7 AD8002ARMZ AD8011ANZ AD8072ARMZ AD8072JNZ AD810ANZ AD8123ACPZ
AD8123ACPZ-R7 AD812ANZ AD813ANZ AD8141ACPZ-R2 AD818ANZ AD828ANZ AD829JNZ AD829SQ AD8134ACPZ-R2 AD8134ACPZ-REEL7 ADA4310-1ARHZ ADA4310-1ARHZ-R7 ADA4433-1BCPZ-R2 ADA4433-1BCPZ-R7 ADA4433-1WBCPZ-R7 ADA4853-2YCPZ-R2 ADA4853-3YRUZ ADA4859-3ACPZ-R2 ADA4310-1ACPZ-R2 AD8073JRZ AD8023ARZ AD813ARZ-14 AD8013ARZ-14 AD813ARZ-14-REEL7 AD8145YCPZ-R7 AD8143ACPZ-REEL7 AD8372ACPZ-R7 ADA4853-2YCPZ-RL7

AD8002ARZ-R7 AD8072JRZ AD8001ARZ AD8002ARZ AD812ARZ-REEL7 AD818ARZ-REEL7

[^0]: ON Semiconductor and UN are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

