NCS3402

Dual Nano-power Open Drain Output Comparator

The NCS3402 is a nano-power comparator consuming only 470 nA per channel supply current, which make this device ideal for battery power and wireless handset applications.

The NCS3402 has a minimum operating supply voltage of 2.7 V over the extended industrial temperature range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), while having an input common-mode range of -0.1 to $\mathrm{V}_{\mathrm{DD}}+5 \mathrm{~V}$.

The ultra low supply current makes the NCS3402 an ideal choice for battery powered and portable applications where quiescent current is the primary concern. Reverse battery protection guards the amplifier from an over-current condition due to improper battery installation. For harsh environments, the inputs can be taken 5 V above the positive supply rail without damage to the device.

Features

- Low Supply Current: 470 nA/Per Channel
- Input Common-Mode Range exceeds the rails
- -0.1 V to VDD +5 V
- Supply Voltage Range: 2.7 V to 16 V
- Reverse Battery Protection Up to 18 V
- Open Drain CMOS Output Stage
- Specified Temperature Range - $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Voltage Sense Circuit
- PSU Monitoring Circuit
- Wireless Handsets
- Portable Medical Equipment

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

OUT1 1	0	8	$V_{D D}$
IN-1 2		7	OUT2
$1 \mathrm{~N}+1$		6	IN-2
$\mathrm{V}_{\text {SS }} 4$		5	$\mathrm{IN}+2$

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	
1	OUT1	Channel 1 Output
2	IN-1	Channel 1 Inverting Input
3	IN+2	Channel 2 Non-Inverting Input
4	$\mathrm{~V}_{\text {SS }}$	Negative Power Supply
5	$\mathrm{IN}+2$	Channel 2 Non-Inverting Input
6	$\mathrm{IN}-2$	Channel 2 Inverting Input
7	OUT2	Channel 2 Output
8	$\mathrm{~V}_{\mathrm{DD}}$	Positive Power Supply

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{DD}	17	V
Differential Input Voltage	V_{ID}	± 20	V
Input Voltage Range (Notes 1 and 2)	V_{IN}	0 to $\mathrm{V}_{\mathrm{CC}}+5$	V
Input Current Range	I_{IN}	± 10	mA
Output Current Range	Io	± 10	mA
Operating Free-Air Temperature Range	T_{A}	-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm (1/16 inch) from case for 10 seconds	$\mathrm{T}_{\text {SLD }}$	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. All voltage values, except differential voltages, are respect to GND
2. Input voltage range is limited to 20 V or $\mathrm{V}_{\mathrm{CC}}+5 \mathrm{~V}$ whichever is smaller

ESD RATINGS

Rating	Symbol	Value	Unit
Human Body Model	HBM	2000	V
Machine Model	MM	200	V

THERMAL CHARACTERISTICS (Note 3)

Rating	Symbol	Value	Unit
Thermal Characteristics Thermal Resistance, Junction-to-Air SOIC8	$\mathrm{R}_{\theta \mathrm{JA}}$	176	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3. Power dissipation must be considered to ensure the maximum junction temperature $\left(\theta_{\mathrm{JA}}\right)$ is not exceeded.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Min	Max	Unit
Supply voltage	$V_{\text {DD }}$	Single supply	2.7	16	V
		Split supply	± 1.35	± 8	
Common-mode input voltage range	$\mathrm{V}_{\text {ICR }}$		-0.1	$\mathrm{V}_{\mathrm{DD}}+5$	V
Operating free-air temperature	$\mathrm{T}_{\text {A }}$		-40	125	${ }^{\circ} \mathrm{C}$

DC PERFORMANCE ELECTRICAL CHARACTERISTICS AT SPECIFIED OPERATING FREE-AIR TEMPERATURE, $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ (unless otherwise noted)

INPUT/OUTPUT CHARACTERISTICS SPECIFIED OPERATING FREE-AIR TEMPERATURE,
$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ (unless otherwise noted)

Input offset current (Note 4)	10	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{R}_{\mathrm{P}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$25^{\circ} \mathrm{C}$	20	100	
			$\begin{aligned} & \text { Full } \\ & \text { range } \end{aligned}$		1000	pA
Input bias current (Note 4)	$\mathrm{IIB}^{\text {I }}$		$25^{\circ} \mathrm{C}$	80	250	pA
			Full range		3000	
Differential input resistance	$\mathrm{R}_{\text {ID }}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{S}} / 2$	$25^{\circ} \mathrm{C}$	300		M Ω
High-impedance output leakage current	l Oz	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {ID }}=1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	50		pA
Low-level output voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{I}_{\mathrm{OL}}=2 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{ID}}=-1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	8		mV
		$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{l}_{\mathrm{OL}}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{ID}}=-1 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	80	200	
			$\begin{gathered} \text { Full } \\ \text { range } \end{gathered}$		300	

POWER SUPPLY SPECIFIED OPERATING FREE-AIR TEMPERATURE, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ (unless otherwise noted)

Supply current (per channel)	I_{Cc}	$\mathrm{R}_{\mathrm{P}}=$ No pullup	Output state low	$25^{\circ} \mathrm{C}$		470	550	nA
				Full range			750	
			Output state high	$25^{\circ} \mathrm{C}$		560	640	
				Full range			950	
Power supply rejection ratio	PSRR	$\mathrm{V}_{\mathrm{CM}}=\underset{\text { load }}{=\mathrm{V}_{\mathrm{S}} / 2, \text { No }}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5 V	$25^{\circ} \mathrm{C}$	75	100		dB
				$\begin{gathered} \text { Full } \\ \text { range } \end{gathered}$	70			
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 15 V	$25^{\circ} \mathrm{C}$	85	105		
				Full range	80			

4. Guaranteed by design or characterization.

SWITCHING CHARACTERISTICS AT RECOMMENDED OPERATING CONDITIONS,
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Parameter	Symbol	Testing Conditions		T_{A}	Min	Typ	Max	Unit
Propagation delay time, low-to-high-level	${ }^{\text {(PLH) }}$	$\begin{gathered} \mathrm{f}=10 \mathrm{kHz}, \\ \mathrm{VSTEP}=100 \mathrm{mV}, \\ \mathrm{RP}_{\mathrm{P}}=1 \mathrm{M} \Omega, \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{gathered}$	Overdrive $=2 \mathrm{mV}$	$25^{\circ} \mathrm{C}$		220		$\mu \mathrm{s}$
			Overdrive $=10 \mathrm{mV}$			85		
			Overdrive $=50 \mathrm{mV}$			30		
Propagation delay time, high-to-low-level output	${ }^{\text {(PHLL }}$)		Overdrive $=2 \mathrm{mV}$	$25^{\circ} \mathrm{C}$		250		
			Overdrive $=10 \mathrm{mV}$			55		
			Overdrive $=50 \mathrm{mV}$			18		
Fall time	tf	$\mathrm{R}_{\mathrm{P}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		$25^{\circ} \mathrm{C}$		5		$\mu \mathrm{S}$

Figure 1. Input Bias/Offset Current vs. Temperature

lol, LOW LEVEL OUTPUT CURRENT (mA)
Figure 3. Low Level Output Voltage vs. Low Level Output Current

IoL, LOW LEVEL OUTPUT CURRENT (mA)
Figure 5. Low Level Output Voltage vs. Low Level Output Current

Figure 2. Open Drain Leakage Current vs. Temperature

lol, LOW LEVEL OUTPUT CURRENT (mA)
Figure 4. Low Level Output Voltage vs. Low Level Output Current

Figure 6. $I_{D D}$ vs. $V_{D D}$ vs. Temperature

Figure 7. Supply Current vs. Free-Air Temperature

Figure 8. Propagation Delay L-H (2.7 V)

TIME ($25 \mu \mathrm{~s} / \mathrm{div}$)
Figure 9. Propagation Delay L-H (5 V)

TIME ($25 \mu \mathrm{~s} / \mathrm{div}$)
Figure 11. Propagation Delay H-L (2.7 V)

TIME (25 $\mu \mathrm{s} / \mathrm{div}$)
Figure 10. Propagation Delay L-H (15 V)

Figure 12. Propagation Delay H-L (5 V)

Figure 13. Propagation Delay H-L (15 V)

Figure 14. Output Fall Time vs. Power Supply

ORDERING INFORMATION

Device	Package	Shipping †
NCS3402DR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOLDERING FOOTPRINT＊

GENERIC
MARKING DIAGRAM＊
NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006） PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	${ }^{\circ}$	$8{ }^{\circ}$	0
	8	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

8 月且且且	8 月且且且
XXXXXX	XXXXXX
AYWW	AYWW
\＃$\because 甘 甘$	1 \＃\＃\＃
Discrete	Discrete （Pb－Free）

XXXXX＝Specific Device Code
A＝Assembly Location
L＝Wafer Lot
＝Year WW Work
＝Work Week
$=$ Work Week \quad＝Pb－Free Package
$=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-\mathrm{Free}$ indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．
＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

STYLES ON PAGE 2

| DOCUMENT NUMBER： | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontrolled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－8 NB | PAGE 1 OF 2 |

[^0]STYLE 1:

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:

PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE

SOURCE
GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10U
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
CATHODE 2
CATHODE 3
CATHODE 4
CATHODE 5
COMMON ANODE
COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
IOUT
STYLE 29:
PIN 1. BASE, DIE \#1
EMITTER, \#1
BASE, \#2
EMITTER, \#2
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#1
COLLECTOR, \#1

STYLE 2:
PIN 1. COLIECTOR, DIE,
COLLECTOR, \#1
COLLECTOR, \#1
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#2
BASE, \#2
EMITTER, \#2
BASE, \#1
EMITTER, \#1
STYLE 6:
PIN 1. SOURCE
DRAIN
DRAIN
DRAIN
SOURCE
SOURCE
. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
BIAS 1 OUTPUT GROUND GROUND BIAS 2 7. INPUT 8. GROUND

STYLE 14:
PIN 1. N-SOURCE
N-GATE
P-SOURCE
P-GATE
P-DRAIN
P-DRAIN
. N-DRAIN
8. N-DRAIN

STYLE 18:
PIN 1. ANODE
2. ANODE

SOURCE
GATE
DRAIN
DRAIN
7. CATHODE
8. CATHODE

STYLE 22:
PIN 1. I/O LINE 1
COMMON CATHODE/VCC
COMMON CATHODE/VCC
I/O LINE 3
COMMON ANODE/GND
I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$

ENABLE
ILIMIT
SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
. GATE 1

STYLE 3
PIN

1. DRAIN, DIE \#1
2. DRAIN, \#1
3. DRAIN, \#2

DRAIN, \#2
5. GATE, \#2
6. SOURCE, \#2
7. GATE, \#1
8. SOURCE, \#

STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE
3. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:

PIN 1. ILIMIT
2. OVLO

UVLO
INPUT+
SOURCE
SOURCE
SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
7. ANODE
8. COMMON CATHODE

STYLE 8

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12:

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#
2. BASE, DIE \#1
3. EMITTER, DIE \#
3. EMITTER, DIE
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIIC_OFF
3. DASIC_SW_DET
4. GND
5. V MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

[^1] rights of others.
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G
LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT 5962-8765801PA MAX9024AUD+
LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX LTC1440IMS8\#PBF AZV331KSTR-G1
LTC1841IS8\#PBF LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB-1\#TRMPBF
LTC1042CN8\#PBF LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LTC1440IS8\#PBF S-89431ACNC-HBVTFG NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL TSX3704IYPT AD790JNZ

[^0]: ON Semiconductor and（IN）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

