Precision Operational Amplifier, $25 \mu \mathrm{~V}$ Offset, Zero-Drift, 36 V Supply, 2 MHz

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

The NCS2191x family of high precision op amps feature low input offset voltage and near-zero drift over time and temperature. These op amps operate over a wide supply range from 4 V to 36 V with low quiescent current. The rail-to-rail output swings within 10 mV of the rails. The family includes the single channel $\operatorname{NCS}(\mathrm{V}) 21911$, the dual channel NCS(V)21912, and the quad channel NCS(V)21914 in a variety of packages. All versions are specified for operation from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Automotive qualified options are available under the NCV prefix.

Features

- Input Offset Voltage: $\pm 25 \mu \mathrm{~V}$ max
- Zero-Drift Offset Voltage: $\pm 0.085 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Voltage Noise Density: $22 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ typical
- Unity Gain Bandwidth: 2 MHz typical
- Supply Voltage: 4 V to 36 V
- Quiescent Current: $570 \mu \mathrm{~A}$ max
- Rail-to-Rail Output
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb -free, Halogen free/BFR free and are RoHS compliant

Typical Applications

- Temperature Measurements
- Transducer Applications
- Electronic Scales
- Medical Instrumentation
- Current Sensing
- Automotive

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

PIN CONNECTIONS
Single Channel Configuration
NCS21911

ORDERING INFORMATION

Channels	Device	Package	Shipping †
Single	NCS21911SN2T1G	SOT23-5 / TSOP-5	3000 / Tape \& Reel
Dual	NCS21912DR2G	SOIC-8	2500 / Tape \& Reel
	NCS21912DMR2G	MICRO-8	4000 / Tape \& Reel
Quad	NCS21914DR2G	SOIC-14	2500 / Tape \& Reel
	NCS21914DTBR2G	TSSOP-14	2500 / Tape \& Reel
Automotive Qualified			
Channels	Device	Package	Shipping ${ }^{\dagger}$
Single	NCV21911SN2T1G	SOT23-5 / TSOP-5	3000 / Tape \& Reel
Dual	NCV21912DR2G	SOIC-8	2500 / Tape \& Reel
	NCV21912DMR2G	MICRO-8	4000 / Tape \& Reel
Quad	NCV21914DR2G	SOIC-14	2500 / Tape \& Reel
	NCV21914DTBR2G	TSSOP-14	2500 / Tape \& Reel

[^0] Specification Brochure, BRD8011/D.

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
Supply Voltage (VDD- VSS)	40	V

INPUT AND OUTPUT PINS

Input Voltage (Note 1)	VSS -0.3 to VDD +0.3	V
Differential Input Voltage (Note 2)	± 17	V
Input Current (Notes 1 and 2)	± 10	mA
Output Short Circuit Current (Note 3)	Continuous	mA

TEMPERATURE

Operating Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	+150	${ }^{\circ} \mathrm{C}$

ESD RATINGS (Note 4)

Human Body Model (HBM)	3000	V
Charged Device Model (CDM)	2000	V

OTHER RATINGS

Latch-up Current (Note 5)	100	mA
MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less.
2. The inputs are diode connected with a total input protection of $1.65 \mathrm{k} \Omega$, increasing the absolute maximum differential voltage to $\pm 17 \mathrm{~V}_{\mathrm{DC}}$ If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input current to $\pm 10 \mathrm{~mA}$.
3. Short-circuit to V_{DD} or $\mathrm{V}_{S S}$. Short circuits to either rail can cause an increase in the junction temperature. The total power dissipation must be limited to prevent the junction temperature from exceeding the $150^{\circ} \mathrm{C}$ limit.
4. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002)
ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)
5. Latch-up Current tested per JEDEC standard JESD78E (AEC-Q100-004).

THERMAL INFORMATION (Note 6)

Rating	Symbol	Package	Value	Unit
Thermal Resistance, Junction to Ambient	$\theta_{J A}$	$\begin{aligned} & \hline \text { TSOP-5/ } \\ & \text { SOT23-5 } \end{aligned}$	170	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Micro8/MSOP8	116	
		SOIC-8	87	
		SOIC-14	59	
		TSSOP-14	78	

6. As mounted on an $80 \times 80 \times 1.5 \mathrm{~mm}$ FR4 PCB with 2S2P, 2 oz copper, and a $200 \mathrm{~mm}^{2}$ heat spreader area. Following JEDEC JESD51-7 guidelines.

OPERATING CONDITIONS

Parameter	Symbol	Range	Unit
Supply Voltage ($\left.\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	V_{S}	4 to 36	V
Specified Operating Temperature Range	T_{A}	-40 to 125	${ }^{\circ} \mathrm{C}$
Input Common Mode Voltage Range	V_{CM}	V_{SS} to $\mathrm{V}_{\mathrm{DD}}-1.5$	V
Differential Voltage (Note 7)	$\mathrm{V}_{\mathrm{DIFF}}$	± 17	V

7. The inputs are diode connected with a total input protection of $1.65 \mathrm{k} \Omega$, increasing the absolute maximum differential voltage to $\pm 17 \mathrm{~V}_{\mathrm{DC}}$. If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input current to $\pm 10 \mathrm{~mA}$.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}$ to 36 V
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ midsupply, unless otherwise noted.
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

INPUT CHARACTERISTICS

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	Avol	$\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	130	150		dB
			125	135		
Open Loop Output Impedance	ZOUT_OL	No Load		See Figure 23		Ω
Output Voltage High, Referenced to Rail	V_{OH}	No Load		5	10	mV
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		100	210	
				140	250	
Output Voltage Low, Referenced to Rail	VoL	No Load		5	10	mV
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		100	210	
				140	250	
Short Circuit Current	Isc	Sinking Current		18		mA
		Sourcing Current		16		
Capacitive Load Drive	C_{L}			1		nF

DYNAMIC PERFORMANCE

Gain Bandwidth Product	GBW	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		2	MHz
Gain Margin	A_{M}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		13	dB
Phase Margin	φ_{M}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		55	-
Slew Rate	SR	$\mathrm{G}=+1$		1.6	V/us
Settling Time	ts	$\mathrm{V}_{\mathrm{S}}=36 \mathrm{~V}$	0.1\%	20	$\mu \mathrm{S}$
			0.01\%	45	$\mu \mathrm{S}$
Overload Recovery Time	t_{OR}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-10 \\ \mathrm{~V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V} \end{gathered}$		1	$\mu \mathrm{S}$

8. Guaranteed by characterization and/or design.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}$ to 36 V
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ midsupply, unless otherwise noted.
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

Total Harmonic Distortion + Noise	THD +N	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\text {OUT }}=1$	0.0003		$\%$
Voltage Noise Density	e_{N}	$\mathrm{f}=1 \mathrm{kHz}$		22	
Current Noise Density	i_{N}	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$		
Voltage Noise, Peak-to-Peak	e_{PP}	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		100	400
Voltage Noise, RMS	$\mathrm{e}_{\mathrm{rms}}$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		70	$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}$ to 36 V		0.02	0.3	$\mu \mathrm{V} / \mathrm{N}$
			130	154		dB
Quiescent Current	I_{Q}	Per channel		475	570	$\mu \mathrm{A}$
					570	

GRAPHS
Typical performance at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 1. Offset Voltage Distribution

Figure 3. Offset Voltage vs. Temperature
Figure 3. Offset Voltage vs. Temperature

Figure 2. Offset Voltage Drift Distribution

Figure 4. Offset Voltage vs. Common Mode Voltage

Figure 5. Offset Voltage vs. Common Mode Voltage

Figure 6. Offset Voltage vs. Power Supply

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

Figure 7. Open Loop Gain and Phase vs. Frequency

Figure 8. Closed Loop Gain vs. Frequency

Figure 9. Input Current vs. Common Mode
Voltage

Figure 10. Input Current vs. Temperature

Figure 11. PSRR vs. Frequency

Figure 12. CMRR vs. Frequency

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

Figure 13. PSRR vs. Temperature

Figure 14. CMRR vs. Temperature at $\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}$

Figure 15. CMRR vs. Temperature at $\mathrm{V}_{\mathrm{S}}=36 \mathrm{~V}$

Figure 16. 0.1 Hz to 10 Hz Noise

Figure 17. Voltage Noise Density vs. Frequency

Figure 18. THD+N vs. Frequency

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

Figure 19. THD+N vs. Output Amplitude

Figure 21. Quiescent Current vs. Temperature

Figure 20. Quiescent Current vs. Supply Voltage

Figure 22. Open Loop Gain vs. Temperature

Figure 23. Open Loop Output Impedance vs.
Frequency

Figure 24. Small Signal Overshoot vs. Capacitive Load (100 mV Output Step)

Figure 25. Small Signal Overshoot vs. Capacitive Load (100 mV Output Step)

TIME (100 us/div)
Figure 26. No Phase Reversal

Figure 27. Positive Overload Recovery

Figure 28. Negative Overload Recovery

Figure 29. Non-Inverting Small Signal Step Response

Figure 31. Non-Inverting Large Signal Step Response

TIME ($5 \mu \mathrm{~s} / \mathrm{div}$)
Figure 33. Large Signal Settling Time, Low-to-High

TIME ($10 \mu \mathrm{~s} / \mathrm{div}$)
Figure 30. Inverting Small Signal Step Response

Figure 32. Inverting Large Signal Step Response

TIME (5 $\mu \mathrm{s} / \mathrm{div}$)
Figure 34. Large Signal Settling Time, High-to-Low

Figure 35. Short Circuit Current vs.
Temperature

Figure 36. Maximum Output Voltage vs.
Frequency $\left(\mathrm{A}_{\mathrm{V}}=1\right.$ for $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 9 \mathrm{~V}$; $A_{V}=2$ for $V_{S}= \pm 18 \mathrm{~V}$)

Figure 37. Output Voltage Low vs. Output Current

Figure 38. Output Voltage High vs. Output Current

Figure 39. EMIRR IN+ vs. Frequency

Figure 40. Channel-to-Channel Crosstalk

NCS21911, NCV21911, NCS21912, NCV21912, NCS21914, NCV21914

APPLICATION INFORMATION

Overview

The NCS21911, NCS21912, and NCS21914 precision op amps provide low offset voltage and zero drift over temperature. With a maximum offset voltage of $25 \mu \mathrm{~V}$ and input common mode voltage range that includes ground, the NCS21911 series is well-suited for applications where precision is required, such as low side current sensing and interfacing with sensors.

The NCS21911 series of amplifiers uses a chopper-stabilized architecture, which provides the advantage of minimizing offset voltage drift over temperature and time. The simplified block diagram is shown in Figure 41. Unlike the classical chopper architecture, the chopper stabilized architecture has two signal paths.

Figure 41. Simplified NCS21911 Block Diagram

In Figure 41, the lower signal path is where the chopper samples the input offset voltage, which is then used to correct the offset at the output. The offset correction occurs at a frequency of 250 kHz . The chopper-stabilized architecture is optimized for best performance at frequencies up to the related Nyquist frequency ($1 / 2$ of the offset correction frequency). As the signal frequency exceeds the Nyquist frequency, 125 kHz , aliasing may occur at the output. This is an inherent limitation of all chopper and chopper-stabilized architectures. Nevertheless, the NCS21911 series op amps have minimal aliasing up to 200 kHz and are less susceptible to aliasing effects when compared to competitor parts from other manufacturers. ON Semiconductor's patented approach utilizes two cascaded, symmetrical, RC notch filters tuned to the chopper frequency and its fifth harmonic to reduce aliasing effects.

The chopper-stabilized architecture also benefits from the feed-forward path, which is shown as the upper signal path of the block diagram in Figure 41. This is the high speed signal path that extends the gain bandwidth up to 2 MHz . Not
only does this help retain high frequency components of the input signal, but it also improves the loop gain at low frequencies. This is especially useful for low-side current sensing and sensor interface applications where the signal is low frequency and the differential voltage is relatively small.

Application Circuits

Low-Side Current Sensing

Low-side current sensing is used to monitor the current through a load. This method can be used to detect over-current conditions and is often used in feedback control, as shown in Figure 42. A sense resistor is placed in series with the load to ground. Typically, the value of the sense resistor is less than $100 \mathrm{~m} \Omega$ to reduce power loss across the resistor. The op amp amplifies the voltage drop across the sense resistor with a gain set by external resistors R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision resistors are required for high accuracy, and the gain is set to utilize the full scale of the ADC for the highest resolution.

Figure 42. Low-Side Current Sensing

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 43. In the measurement, the voltage change that is
produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

Figure 43. Wheatstone Bridge Circuit Amplification

EMI Susceptibility and Input Filtering

Op amps have varying amounts of EMI susceptibility. Semiconductor junctions can pick up and rectify EMI signals, creating an EMI-induced voltage offset at the output, adding another component to the total error. Input pins are the most sensitive to EMI. The NCS2191x integrates low-pass filters to decrease its sensitivity to EMI. Figure 39 shows the EMIRR performance.

General Layout Guidelines

To ensure optimum device performance, it is important to follow good PCB design practices. Place $0.1 \mu \mathrm{~F}$ decoupling
capacitors as close as possible to the supply pins. Keep traces short, utilize a ground plane, choose surface-mount components, and place components as close as possible to the device pins. These techniques will reduce susceptibility to electromagnetic interference (EMI). Thermoelectric effects can create an additional temperature dependent offset voltage at the input pins. To reduce these effects, use metals with low thermoelectric coefficients and prevent temperature gradients from heat sources or cooling fans.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

[^2] rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SOIC-14 NB	

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN.
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MDLD FLASH, PRDTRUSIUNS, $\square R ~ G A T E ~ B U R R S ~$ SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRITRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE Tロ THE LIWEST PDINT UN THE PACKAGE BGDY.

END VIEW

0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	---	---	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	5.05
L	0.40	0.55	0.70

XXXX = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

- $\quad=\mathrm{Pb}-$ Free Package

STYLE 1:	STYLE 2.	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
3. SOURCE	3. SOURCE 2	3. P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking
8. DRAIN
2. GATE 1 3. SOURCE 2
4. GATE 2 5. DRAIN 2 7. DRAIN 2 8. DRAIN 1

PIN 1. N-SOURCE 2. N-GATE . P-SOURCE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
8. N-DRAIN

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF $\mathbf{1}$ |

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	$0{ }^{\circ}$	8°	0°	8°

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A 5962-8967702CA LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZR7 TLC272CD AD8539ARMZ LTC6084HDD\#PBF LTC1050CN8\#PBF LT1024CN\#PBF LT1996AIDD\#PBF LTC2055CDD\#PBF LT1112CN8\#PBF

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^2]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

