Voltage Regulator Adjustable Output, Positive 100 mA

LM317L, NCV317L

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator.

Features

- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Package
- Eliminates Stocking Many Fixed Voltages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are $\mathrm{Pb}-$ Free Devices

Simplified Application

${ }^{*} \mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter.
${ }^{* *} \mathrm{C}_{0}$ is not needed for stability, however, it does improve transient response.

$$
\mathrm{V}_{\text {out }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)+\mathrm{I}_{\mathrm{Adj}} \mathrm{R}_{2}
$$

Since $I_{\text {Adj }}$ is controlled to less than $100 \mu \mathrm{~A}$, the error associated with this term is negligible in most applications.

ON Semiconductor ${ }^{\oplus}$
www.onsemi.com
LOW CURRENT
THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SOIC-8 D SUFFIX CASE 751

STRAIGHT LEAD

BENT LEAD
Pin 1. $V_{\text {in }}$
2. $V_{\text {out }}$
3. $V_{\text {out }}$
4. Adjust
5. N.C.
6. $V_{\text {out }}$
7. $V_{\text {out }}$
8. N.C.

TO-92
Pin 1. Adjust
2. $V_{\text {out }}$
3. $v_{\text {in }}$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 9 of this data sheet.

LM317L，NCV317L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input－Output Voltage Differential	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	40	Vdc
Power Dissipation Case 29 （TO－92） $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Ambient Thermal Resistance，Junction－to－Case Case 751 （SOIC－8）（Note 1） $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Ambient Thermal Resistance，Junction－to－Case	P_{D} $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {日JC }}$ P_{D} $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {日JC }}$	Internally Limited 160 83 Internally Limited 180 45	W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	TJMAX	＋150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to＋150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．
1．SOIC－8 Junction－to－Ambient Thermal Resistance is for minimum recommended pad size．Refer to Figure 24 for Thermal Resistance variation versus pad size．
2．This device series contains ESD protection and exceeds the following tests：
Human Body Model， 2000 V per MIL STD 883，Method 3015.
Machine Model Method， 200 V ．

Figure 1．Representative Schematic Diagram

LM317L, NCV317L

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} ; \mathrm{T}_{J}=\mathrm{T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$ (Note 3); $\mathrm{I}_{\max }$ and $\mathrm{P}_{\max }$ (Note 4); unless otherwise noted.)

Characteristics	Figure	Symbol	LM317L, LB, NCV317LB			Unit
			Min	Typ	Max	
Line Regulation (Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}$	1	Regline	-	0.01	0.04	\%/V
$\begin{gathered} \text { Load Regulation (Note 5), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L} \\ \mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \end{gathered}$	2	Regload	_	$\begin{aligned} & 5.0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 25 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \mathrm{~V}_{\mathrm{O}} \end{gathered}$
Adjustment Pin Current	3	$\mathrm{I}_{\text {Adj }}$	-	50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change $\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max } \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L} \end{aligned}$	1, 2	$\Delta_{\text {Adj }}$	-	0.2	5.0	$\mu \mathrm{A}$
Reference Voltage $\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max } \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L} \end{aligned}$	3	$\mathrm{V}_{\text {ref }}$	1.20	1.25	1.30	V
Line Regulation (Note 5), 3.0 V $\leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}$	1	Regline	-	0.02	0.07	\%/V
$\begin{aligned} & \text { Load Regulation (Note 5) } \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L} \\ & \mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \end{aligned}$	2	Regload	-	$\begin{aligned} & 20 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 70 \\ & 1.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \% \mathrm{~V}_{\mathrm{O}} \end{gathered}$
Temperature Stability ($\mathrm{l}_{\text {low }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {high }}$)	3	$\mathrm{T}_{\text {S }}$	-	0.7	-	\% V ${ }_{0}$
Minimum Load Current to Maintain Regulation ($\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}$)	3	$I_{\text {Lmin }}$	-	3.5	10	mA
$\begin{aligned} & \text { Maximum Output Current } \\ & \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 6.25 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{Z} \text { Package } \\ & \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z} \text { Package } \end{aligned}$	3	$I_{\text {max }}$	100	$\begin{gathered} 200 \\ 20 \end{gathered}$	-	mA
$\begin{aligned} & \text { RMS Noise, \% of } \mathrm{V}_{\mathrm{O}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	-	N	-	0.003	-	\% V ${ }_{0}$
$\begin{aligned} & \text { Ripple Rejection (Note 6) } \\ & V_{O}=1.2 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{O}}=10.0 \mathrm{~V} \end{aligned}$	4	RR	60	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	-	dB
Thermal Shutdown (Note 7)	-	-	-	180	-	${ }^{\circ} \mathrm{C}$
Long Term Stability, $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}$ (Note 8) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for Endpoint Measurements	3	S	-	0.3	1.0	\%/1.0 k Hrs.

3. $T_{\text {low }}$ to $\mathrm{T}_{\text {high }}=0^{\circ}$ to $+125^{\circ} \mathrm{C}$ for LM317L -40° to $+125^{\circ} \mathrm{C}$ for LM317LB, NCV317LB
4. $I_{\max }=100 \mathrm{~mA} \quad P_{\max }=625 \mathrm{~mW}$
5. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
6. $\mathrm{C}_{\text {Adj }}$, when used, is connected between the adjustment pin and ground.
7. Thermal characteristics are not subject to production test.
8. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM317L, NCV317L

Figure 2. Line Regulation and $\Delta I_{\text {Adj }}$ /Line Test Circuit

Figure 3. Load Regulation and $\Delta I_{\text {Adj }} /$ Load Test Circuit

Figure 4. Standard Test Circuit

LM317L, NCV317L

Figure 5. Ripple Rejection Test Circuit

Figure 6. Load Regulation

Figure 8. Current Limit

Figure 7. Ripple Rejection

Figure 9. Dropout Voltage

LM317L, NCV317L

Figure 10. Minimum Operating Current

Figure 12. Temperature Stability

Figure 14. Line Regulation

Figure 11. Ripple Rejection versus Frequency

Figure 13. Adjustment Pin Current

Figure 15. Output Noise

Figure 16. Line Transient Response

Figure 17. Load Transient Response

APPLICATIONS INFORMATION

Basic Circuit Operation

The LM317L is a 3-terminal floating regulator. In operation, the LM317L develops and maintains a nominal 1.25 V reference ($\mathrm{V}_{\text {ref }}$) between its output and adjustment terminals. This reference voltage is converted to a programming current ($\mathrm{I}_{\text {PROG }}$) by R_{1} (see Figure 13), and this constant current flows through R_{2} to ground. The regulated output voltage is given by:

$$
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
$$

Since the current from the adjustment terminal ($\mathrm{I}_{\mathrm{Adj}}$) represents an error term in the equation, the LM317L was designed to control $\mathrm{I}_{\text {Adj }}$ to less than $100 \mu \mathrm{~A}$ and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 18. Basic Circuit Configuration

Load Regulation

The LM317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

External Capacitors

A $0.1 \mu \mathrm{~F}$ disc or $1.0 \mu \mathrm{~F}$ tantalum input bypass capacitor $\left(\mathrm{C}_{\mathrm{in}}\right)$ is recommended to reduce the sensitivity to input line impedance.
The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ($\mathrm{C}_{\mathrm{Adj}}$) prevents ripple from being amplified as the output voltage is increased. A $10 \mu \mathrm{~F}$ capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.
Although the LM317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$ in the form of a $1.0 \mu \mathrm{~F}$ tantalum or $25 \mu \mathrm{~F}$ aluminum electrolytic capacitor on the output swamps this effect and insures stability.

LM317L, NCV317L

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values $\left(\mathrm{C}_{\mathrm{O}}>10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{Adj}}>5.0 \mu \mathrm{~F}\right)$. Diode D_{1} prevents C_{O} from discharging thru the IC during an input short circuit. Diode D_{2} protects against capacitor $C_{\text {Adj }}$ discharging through the IC during an output short circuit. The combination of diodes D_{1} and D_{2} prevents $C_{\text {Adj }}$ from discharging through the IC during an input short circuit.

Figure 20. Adjustable Current Limiter

Figure 22. Slow Turn-On Regulator

Figure 19. Voltage Regulator with Protection Diodes

D_{1} protects the device during an input short circuit.

Figure 21. 5.0 V Electronic Shutdown Regulator

Figure 23. Current Regulator

LM317L, NCV317L

Figure 24. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

SOIC-8
CASE 751

XXXXX = 317LB, LM317
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
LM317LBDG	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
LM317LBDR2G		SOIC-8 (Pb-Free)	2500/Tape \& Reel
LM317LBZG		TO-92 (Pb-Free)	2000 Units / Bag
LM317LBZRAG		TO-92 (Pb-Free)	2000 Tape \& Reel
LM317LBZRPG		TO-92 (Pb-Free)	2000 Ammo Pack
NCV317LBDG*		SOIC-8 (Pb-Free)	98 Units / Rail
NCV317LBDR2G*		SOIC-8 (Pb-Free)	2500/Tape \& Reel
NCV317LBZG*		TO-92 (Pb-Free)	2000 Units / Bag
NCV317LBZRAG*		TO-92 (Pb-Free)	2000 Tape \& Reel
LM317LDG	$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SOIC-8 (Pb-Free)	98 Units / Rail
LM317LDR2G		SOIC-8 (Pb-Free)	2500/Tape \& Reel
LM317LZG		TO-92 (Pb-Free)	2000 Units / Bag
LM317LZRAG		TO-92 (Pb-Free)	2000 Tape \& Reel
LM317LZREG		TO-92 (Pb-Free)	2000 Tape \& Reel
LM317LZRMG		TO-92 (Pb-Free)	2000 Ammo Pack
LM317LZRPG		TO-92 (Pb-Free)	2000 Ammo Pack

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV devices: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

STRAIGHT LEAD

BENT LEAD

TO-92 (TO-226) 1 WATT
CASE 29-10
ISSUE D
DATE 05 MAR 2021

END VIEW

TDP VIEW

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRULLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DU NDT INCLUDE MILD FLASH GR GATE PRITRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRETRUSIDN. LEAD WIDTH INCLUDING PROTRUSIUN SHALL NOT EXCEED 0.20. DIMENSIDN b2 LDCATED ABZVE THE DAMBAR PORTIUN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	1.27 BSC		
L	13.80	14.00	14.20

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 3 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

TO-92 (TO-226) 1 WATT
 CASE 29-10
 ISSUE D

DATE 05 MAR 2021

FGRMED LEAD
NDTES:

1. DIMENSIUNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DZ NDT INCLUDE MDLD FLASH GR GATE PRDTRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRDTRUSIDN. LEAD WIDTH INCLUDING PRDTRUSIDN SHALL NDT EXCEED 0.20. DIMENSIUN b2 LDCATED ABZVE THE DAMBAR PGRTIDN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	2.50 BSC		
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	3.00 REF		

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 3 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE D

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	Emitter
3.	BASE
STYLE 26:	
PIN 1.	V_{cc}
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1. MAIN TERMINAL 1	
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1. MT	
2.	SUBSTRATE
3.	MT
STYLE 32:	
PIN 1.	BASE
2.	COLLECTOR
3.	

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	OUTPUT

STYLE 4:		STYLE 5:	
PIN 1.	CATHODE	PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	
3.	BASE 2	3.	ANODE
STYLE 14		STYLE 15:	
PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24		STYLE 25:	
PIN 1.	EMITTER	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
3.	LOGIC	3.	Emitter

GENERIC
MARKING DIAGRAM*
XXXXX
XXXXX
ALYW•
\quad.

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " s ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 3 OF 3 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

