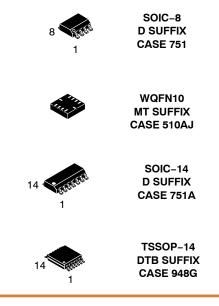
onsemi

Single Supply 3.0 V to 44 V Operational Amplifiers

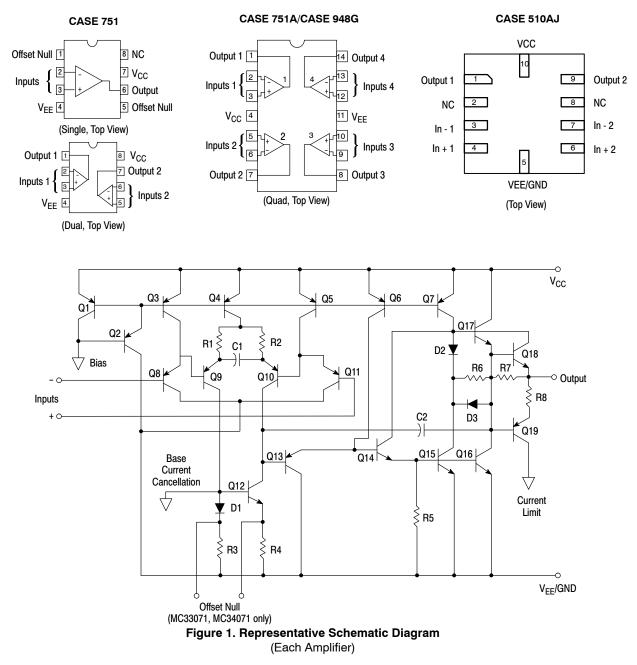

MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A

Quality bipolar fabrication with innovative design concepts are employed for the MC33071/72/74, MC34071/72/74, NCV33072/74A series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/µs slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential (V_{EE}). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33071/72/74, MC34071/72/74, NCV33072/74, A series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic SOIC, QFN and TSSOP surface mount packages.

Features

- Wide Bandwidth: 4.5 MHz
- High Slew Rate: 13 V/µs
- Fast Settling Time: 1.1 µs to 0.1%
- Wide Single Supply Operation: 3.0 V to 44 V
- Wide Input Common Mode Voltage Range: Includes Ground (VEE)
- Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
- Large Output Voltage Swing: -14.7 V to +14 V (with ±15 V Supplies)
- Large Capacitance Drive Capability: 0 pF to 10,000 pF
- Low Total Harmonic Distortion: 0.02%
- Excellent Phase Margin: 60°
- Excellent Gain Margin: 12 dB
- Output Short Circuit Protection
- ESD Diodes/Clamps Provide Input Protection for Dual and Quad
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ORDERING INFORMATION

See detailed ordering and shipping information on page 18 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 19 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS

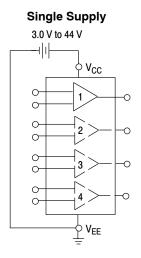
Rating	Symbol	Value	Unit
Supply Voltage (from V _{EE} to V _{CC})	V _S	+44	V
Input Differential Voltage Range	V _{IDR}	(Note 1)	V
Input Voltage Range	V _{IR}	(Note 1)	V
Output Short Circuit Duration (Note 2)	t _{SC}	Indefinite	Sec
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{stg}	-60 to +150	°C
ESD Capability, Dual and Quad (Note 3) Human Body Model Machine Model	ESD _{HBM} ESD _{MM}	2000 200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Should not be assumed, damage may occur and reliability may be affected.
 Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded (see Figure 2).
 This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC-Q100-002 (JEDEC standard: JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (JEDEC standard: JESD22-A115)

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L = \text{connected to ground, unless otherwise noted}. See Note 4 for$ $T_A = T_{low}$ to T_{hiah})

		A Suffix		N	lon-Suffi	ix		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage ($R_S = 100 \Omega$, $V_{CM} = 0 V$, $V_O = 0 V$) $V_{CC} = +15 V$, $V_{EE} = -15 V$, $T_A = +25^{\circ}C$ $V_{CC} = +5.0 V$, $V_{EE} = 0 V$, $T_A = +25^{\circ}C$ $V_{CC} = +15 V$, $V_{EE} = -15 V$, $T_A = T_{low}$ to T_{high}	V _{IO}	_ _ _	0.5 0.5 -	3.0 3.0 5.0	- - -	1.0 1.5 -	5.0 5.0 7.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_S = 10 \ \Omega$, $V_{CM} = 0 \ V$, $V_O = 0 \ V$, $T_A = T_{low}$ to T_{high}	ΔV _{IO} /ΔT	_	10	-	-	10	_	μV/°C
Input Bias Current (V _{CM} = 0 V, V _O = 0 V) $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	I _{IB}	-	100 _	500 700	-	100 -	500 700	nA
Input Offset Current (V _{CM} = 0 V, V _O = 0V) $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	I _{IO}	-	6.0 -	50 300	-	6.0 _	75 300	nA
Input Common Mode Voltage Range $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	V _{ICR}		to (V _{CC} - to (V _{CC} -			to (V _{CC} - to (V _{CC} -		V
Large Signal Voltage Gain (V _O = ±10 V, R _L = 2.0 k Ω) T _A = +25°C T _A = T _{low} to T _{high}	A _{VOL}	50 25	100 -		25 20	100 -		V/mV
$ \begin{array}{l} \text{Output Voltage Swing } (\text{V}_{\text{ID}} = \pm 1.0 \text{ V}) \\ \text{V}_{\text{CC}} = +5.0 \text{ V}, \text{V}_{\text{EE}} = 0 \text{ V}, \text{ R}_{\text{L}} = 2.0 \text{ k}\Omega, \text{ T}_{\text{A}} = +25^{\circ}\text{C} \\ \text{V}_{\text{CC}} = +15 \text{ V}, \text{V}_{\text{EE}} = -15 \text{ V}, \text{ R}_{\text{L}} = 10 \text{ k}\Omega, \text{ T}_{\text{A}} = +25^{\circ}\text{C} \\ \text{V}_{\text{CC}} = +15 \text{ V}, \text{V}_{\text{EE}} = -15 \text{ V}, \text{ R}_{\text{L}} = 2.0 \text{ k}\Omega, \\ \text{T}_{\text{A}} = \text{T}_{\text{low}} \text{ to } \text{T}_{\text{high}} \end{array} $	V _{OH}	3.7 13.6 13.4	4.0 14 -	- - -	3.7 13.6 13.4	4.0 14 -	- - -	V
$ \begin{array}{l} V_{CC}=+5.0 \; V, \; V_{EE}=0 \; V, \; R_L=2.0 \; k\Omega, \; T_A=+25^\circ C \\ V_{CC}=+15 \; V, \; V_{EE}=-15 \; V, \; R_L=10 \; k\Omega, \; T_A=+25^\circ C \\ V_{CC}=+15 \; V, \; V_{EE}=-15 \; V, \; R_L=2.0 \; k\Omega, \\ T_A=T_{low} \; to \; T_{high} \end{array} $	V _{OL}	- - -	0.1 -14.7 -	0.3 -14.3 -13.5	- - -	0.1 -14.7 -	0.3 -14.3 -13.5	V
Output Short Circuit Current (V_{ID} = 1.0 V, V_O = 0 V, T _A = 25°C) Source Sink	I _{SC}	10 20	30 30		10 20	30 30		mA
Common Mode Rejection $R_S \leq 10 \ k\Omega, \ V_{CM} = V_{ICR}, \ T_A = 25^\circ C$	CMR	80	97	-	70	97	-	dB
Power Supply Rejection (R _S = 100 Ω) V _{CC} /V _{EE} = +16.5 V/-16.5 V to +13.5 V/-13.5 V, T _A = 25°C	PSR	80	97	-	70	97	_	dB
$\begin{array}{l} \mbox{Power Supply Current (Per Amplifier, No Load)} \\ V_{CC} = +5.0 \ V, \ V_{EE} = 0 \ V, \ V_O = +2.5 \ V, \ T_A = +25^{\circ}C \\ V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ V_O = 0 \ V, \ T_A = +25^{\circ}C \\ V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ V_O = 0 \ V, \\ T_A = T_{low} \ to \ T_{high} \end{array}$	ID	- - -	1.6 1.9 –	2.0 2.5 2.8	- - -	1.6 1.9 -	2.0 2.5 2.8	mA

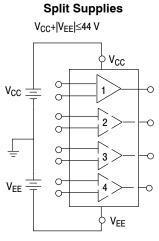
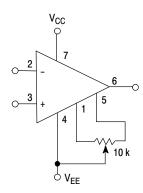

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

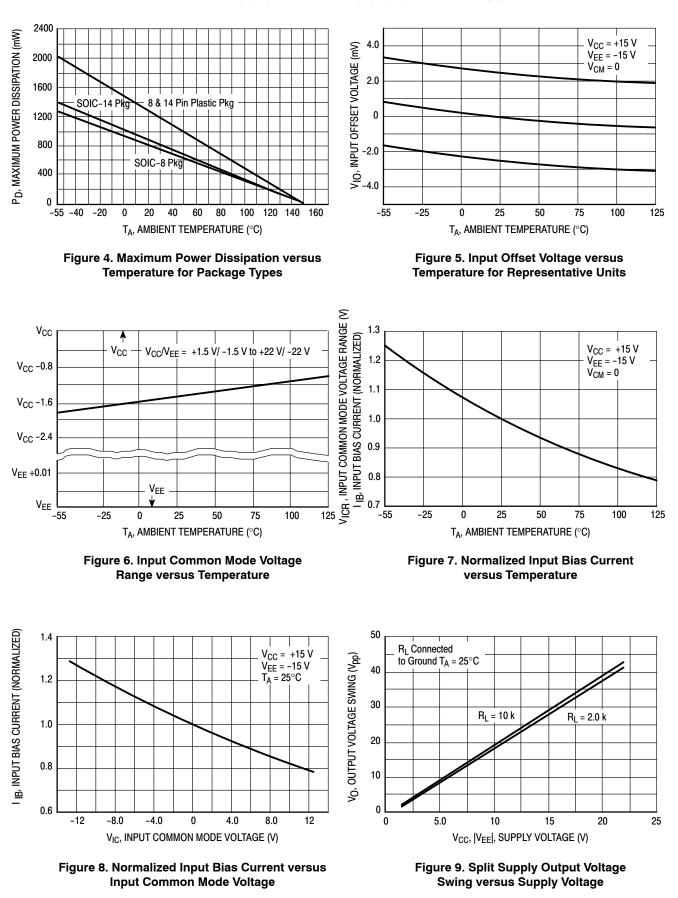
4.
$$T_{low} = -40^{\circ}C$$
 for MC33071,2,4,/A, NCV33074/A T_{high}
= 0°C for MC34071,2,4,/A

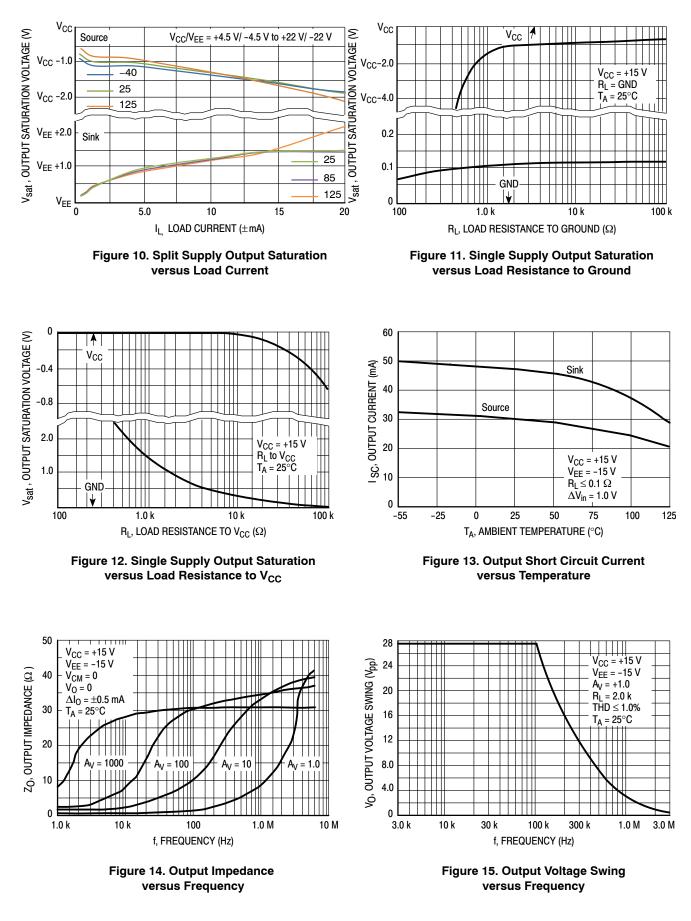
= -40°C for MC34072,4/V, NCV33072,4A

Case 510AJ $T_{\text{low}}/T_{\text{high}}$ guaranteed by product characterization.

			A Suffix		Non-Suffix			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Slew Rate (V _{in} = -10 V to +10 V, R _L = 2.0 kΩ, C _L = 500 pF) A _V = +1.0 A _V = -1.0	SR	8.0 -	10 13	-	8.0 -	10 13		V/µs
Setting Time (10 V Step, A _V = -1.0) To 0.1% (+1/2 LSB of 9-Bits) To 0.01% (+1/2 LSB of 12-Bits)	t _s		1.1 2.2			1.1 2.2		μs
Gain Bandwidth Product (f = 100 kHz)	GBW	3.5	4.5	-	3.5	4.5	-	MHz
Power Bandwidth A_V = +1.0, R_L = 2.0 k\Omega, V_O = 20 V_{pp}, THD = 5.0\%	BW	-	160	-	-	160	_	kHz
Phase margin $R_L = 2.0 \text{ k}\Omega$ $R_L = 2.0 \text{ k}\Omega$, $C_L = 300 \text{ pF}$	f _m		60 40			60 40		Deg
Gain Margin R _L = 2.0 k Ω R _L = 2.0 k Ω , C _L = 300 pF	A _m		12 4.0	-		12 4.0		dB
Equivalent Input Noise Voltage $R_S = 100 \ \Omega$, f = 1.0 kHz	e _n	-	32	-	-	32	-	nV/√H
Equivalent Input Noise Current f = 1.0 kHz	i _n	-	0.22	-	-	0.22	-	pA/√H
Differential Input Resistance $V_{CM} = 0 V$	R _{in}	-	150	-	-	150	-	MΩ
Differential Input Capacitance $V_{CM} = 0 V$	C _{in}	-	2.5	-	-	2.5	-	pF
Total Harmonic Distortion $A_V = +10, \ R_L = 2.0 \ k\Omega, \ 2.0 \ V_{pp} \leq V_O \leq 20 \ V_{pp}, \ f = 10 \ kHz$	THD	-	0.02	-	-	0.02	-	%
Channel Separation (f = 10 kHz)	-	-	120	-	-	120	-	dB
Open Loop Output Impedance (f = 1.0 MHz)	Z _O	-	30	-	-	30	-	W


Figure 2. Power Supply Configurations



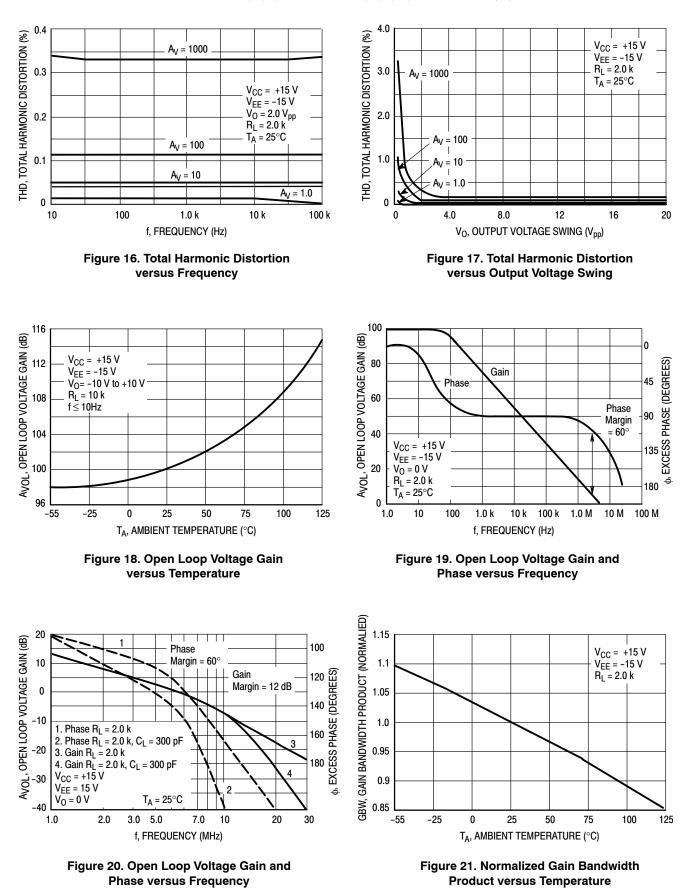
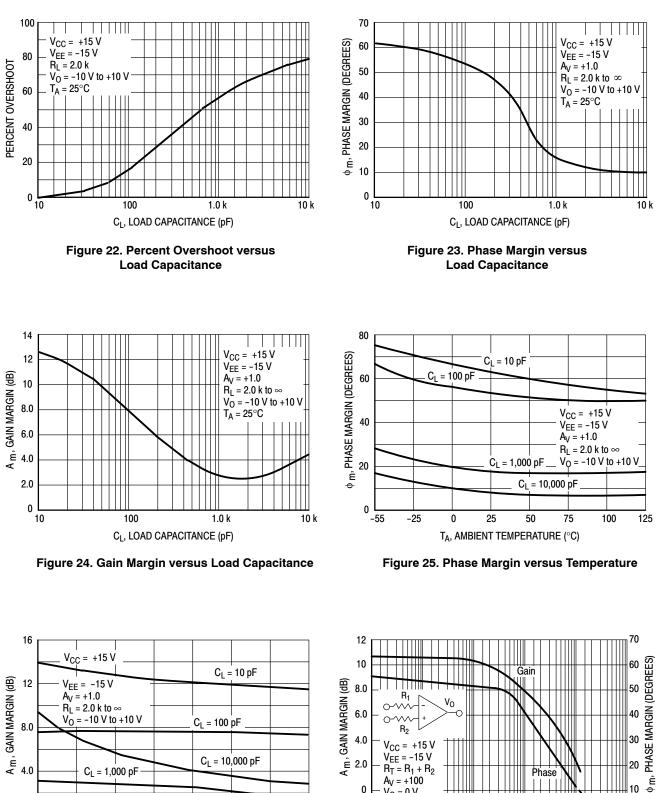

Offset nulling range is approximately ± 80 mV with a 10 k potentiometer (MC33071, MC34071 only).

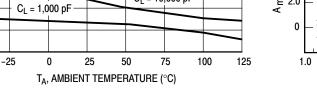
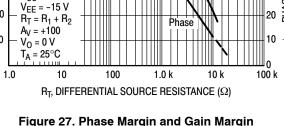
Figure 3. Offset Null Circuit

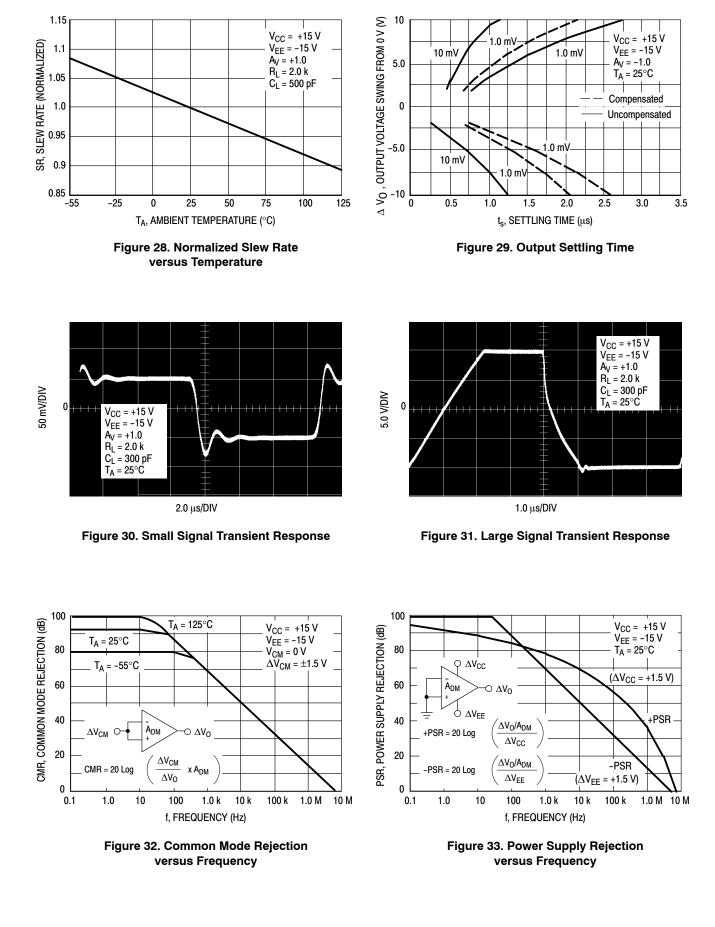
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A



MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A

MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A


Figure 26. Gain Margin versus Temperature

0

-55

MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A

PSR, POWER SUPPLY REJECTION (dB) 52 28 56 50 9.0 -PSR $(\Delta V_{EE} = +1.5 \text{ V})$ $V_{CC} = +15 V$ $T_A = -55^{\circ}C$ I_{CC}, SUPPLY CURRENT (mA) 0.9 0.9 0.9 V_{EE} = -15 V +PSR (ΔV_{CC} = +1.5 V) TA = 25°C $\circ \Delta V_{CC}$ $\Delta V_0 / A_{DM}$ T_A = 125°C +PSR = 20 Log ΔV_{CC} A_{DM} Ο Δνο $\Delta V_0 / A_{DM}$ ό Δv_{ee} PSR = 20 Loo ΔV_{EE} Quad device 4.0 65 20 75 5.0 10 15 25 -55 -25 0 25 50 100 125 0 V_{CC}, |V_{EE}|, SUPPLY VOLTAGE (V) T_A, AMBIENT TEMPERATURE (°C) Figure 34. Supply Current versus Figure 35. Power Supply Rejection Supply Voltage versus Temperature 2.8 120 70 , INPUT NOICE VOLTAGE (nV √HZ) $V_{CC} = +15 V$, INPUT NOISE CURRENT (pA VHz 60 CHANNEL SEPARATION (dB) V_{CC} = +15 V 2.4 V_{EE} = -15 V V_{EE} = -15 V $V_{CM} = 0$ 2.0 50 T_A = 25°C TA = 25°C 40 1.6 Voltage 1.2 30 Current 20 0.8 20 10 e Ē 0 0 20 30 50 70 100 200 300 10 100 1.0 k 10 k 100 k 10 f, FREQUENCY (kHz) f, FREQUENCY (kHz) Figure 36. Channel Separation versus Frequency Figure 37. Input Noise versus Frequency

MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A

APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage.

Since the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to ± 44 V, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between V_{EE} and V_{CC} supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the V_{CC} voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source

up to approximately 5.0 mA of current from V_{EE} through either inputs clamping diode without damage or latching, although phase reversal may again occur.

If one or both inputs exceed the upper common mode voltage limit, the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions.

Since the input capacitance associated with the small geometry input device is substantially lower (2.5 pF) than the typical JFET input gate capacitance (5.0 pF), better frequency response for a given input source resistance can be achieved using the MC34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling D-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher

values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 2.0 k Ω of feedback resistance, the MC34071 series can settle to within 1/2 LSB of 8–bits in 1.0 μ s, and within 1/2 LSB of 12–bits in 2.2 μ s for a 10 V step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is ±13 V/ μ s. In the classic noninverting unity gain configuration, the output positive slew rate is +10 V/ μ s, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform.

Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 k Ω load resistance can swing within 1.0 V of the positive rail (V_{CC}), and within 0.3 V of the negative rail (V_{EE}), providing a 28.7 V_{pp} swing from ±15 V supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q7, and VBE of the NPN pull up transistor Q17, and the voltage drop associated with the short circuit resistance, R7. The negative swing is limited by the saturation voltage of the pull-down transistor Q_{16} , the voltage drop $I_L R_6$, and the voltage drop associated with resistance R₇, where I_L is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{EE}. For large valued sink currents (>5.0 mA), diode D3 clamps the voltage across R₆, thus limiting the negative swing to the saturation voltage of Q_{16} , plus the forward diode drop of D3 ($\approx V_{EE}$ +1.0 V). Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications.

If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter–follower transistor has been eliminated, the MC34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of (V_{EE} +1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications.

In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (30 Ω typ @ 1.0 MHz) allows capacitive drive capability from 0 pF to 10,000 pF without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications.

Although the single supply specifications is defined at 5.0 V, these amplifiers are functional to 3.0 V @ 25° C although slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die.

As with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input–output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ± 15 V supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

(Typical Single Supply Applications V_{CC} = 5.0 V)

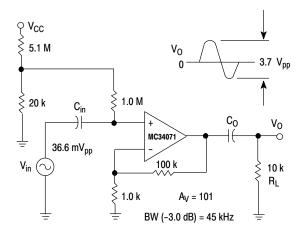
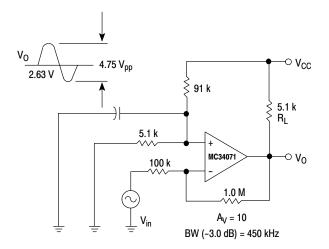
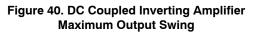
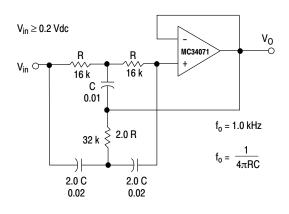





Figure 38. AC Coupled Noninverting Amplifier

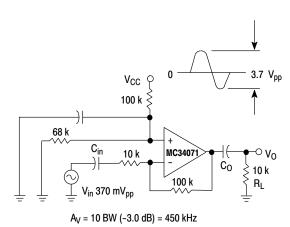


Figure 39. AC Coupled Inverting Amplifier

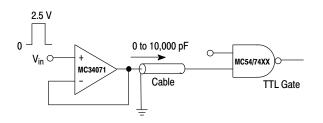


Figure 41. Unity Gain Buffer TTL Driver

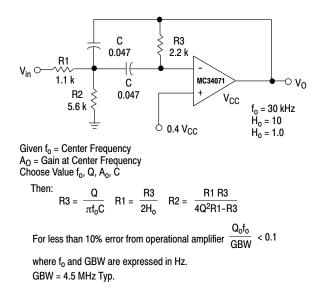


Figure 43. Active Bandpass Filter

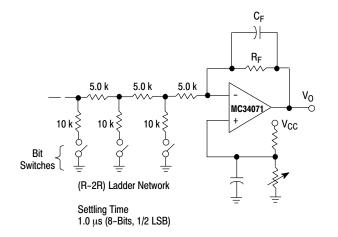
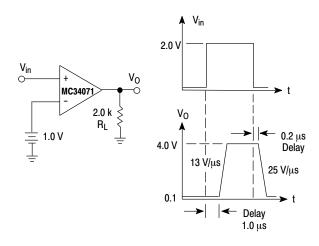



Figure 44. Low Voltage Fast D/A Converter

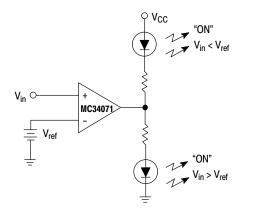


Figure 46. LED Driver

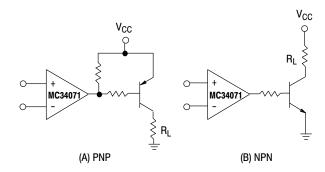
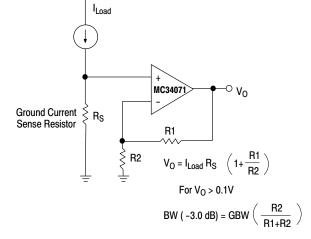
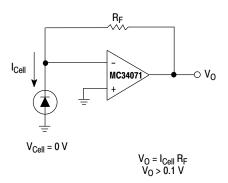
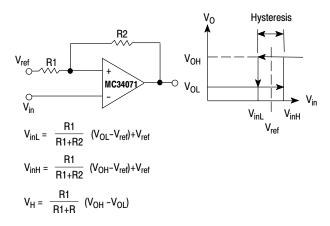


Figure 47. Transistor Driver

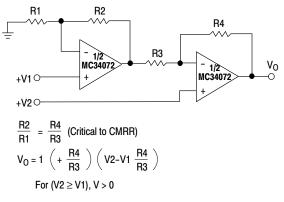

Figure 48. AC/DC Ground Current Monitor

Figure 50. Low Input Voltage Comparator with Hysteresis

Figure 52. High Input Impedance Differential Amplifier

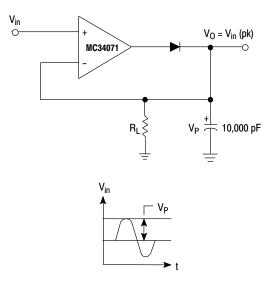
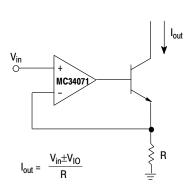



Figure 54. Low Voltage Peak Detector

Figure 51. High Compliance Voltage to Sink Current Converter

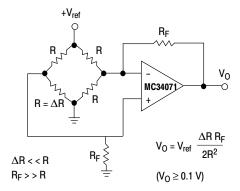
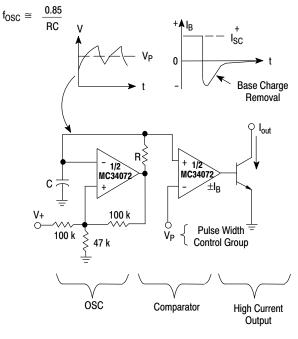
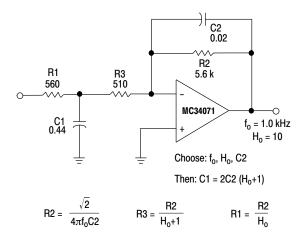




Figure 53. Bridge Current Amplifier

GENERAL ADDITIONAL APPLICATIONS INFORMATION V_S = $\pm 15.0~V$

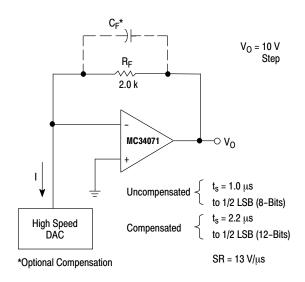
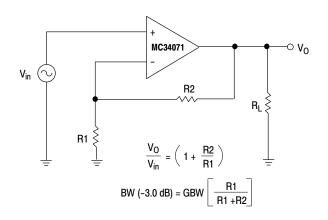
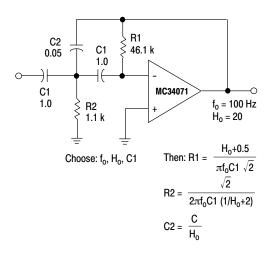
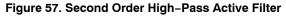





Figure 58. Fast Settling Inverter

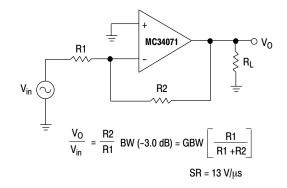


Figure 59. Basic Inverting Amplifier

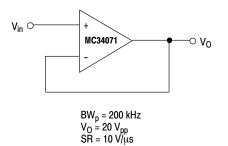


Figure 61. Unity Gain Buffer ($A_V = +1.0$)

MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A

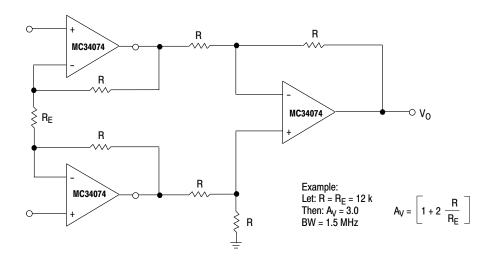


Figure 62. High Impedance Differential Amplifier

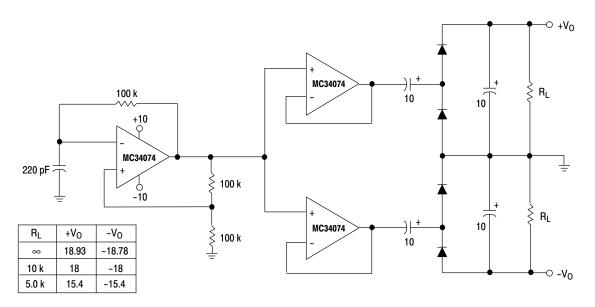
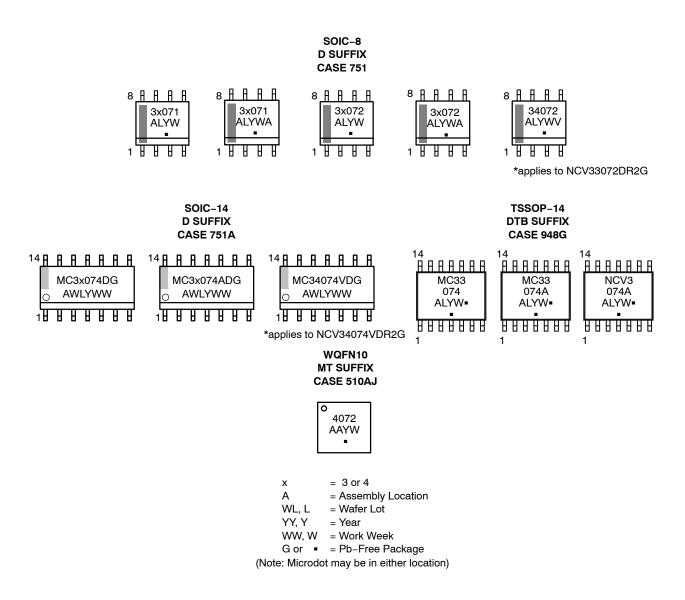
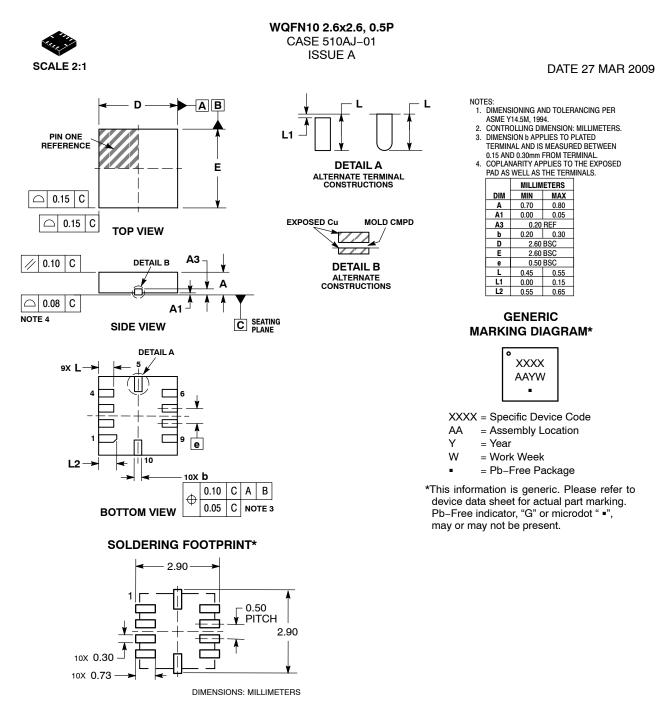


Figure 63. Dual Voltage Doubler


ORDERING INFORMATION

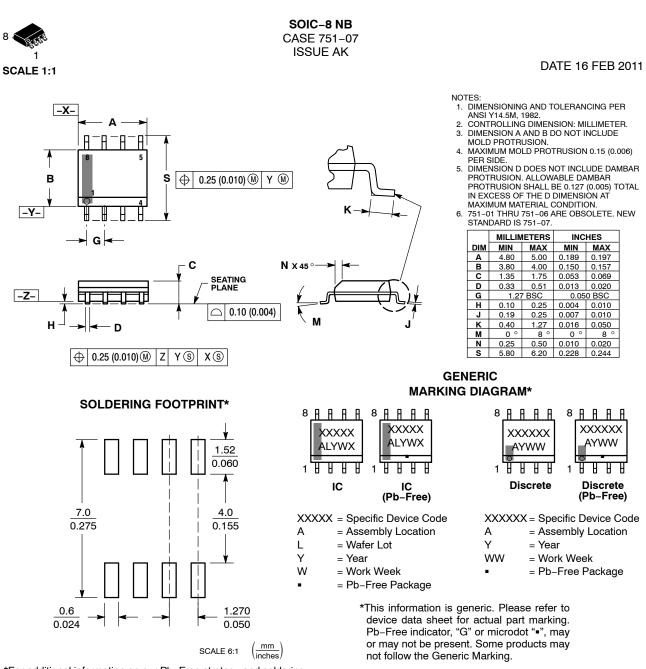
Op Amp Function	Device	Operating Temperature Range	Package	Shipping [†]
	MC34071DR2G	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
Single	MC33071DR2G	T 400 km 0500	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC33071ADR2G	$T_{A} = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC34072DR2G		SOIC-8 (Pb-Free)	
	MC34072ADR2G	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
	MC34072AMTTBG		WQFN10 (Pb-Free)	3000 Units / Tape & Reel
Dual	MC33072DR2G		SOIC-8 (Pb-Free)	
	MC33072ADR2G	$T_A = -40^\circ \text{ to } +85^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC34072VDR2G		SOIC-8 (Pb-Free)	2500 / Tape & Reel
	NCV33072DR2G*	$T_A = -40^\circ \text{ to } +125^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC34074ADR2G		SOIC-14 (Pb-Free)	
	MC34074DR2G	$T_{A} = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel
	MC33074DR2G		SOIC-14 (Pb-Free)	
	NCV33074DR2G*		SOIC-14 (Pb-Free)	2500 / Tape & Reel
	MC33074ADR2G		SOIC-14 (Pb-Free)	
Quad	NCV33074ADR2G*	$T_A = -40^\circ$ to $+85^\circ$ C	SOIC-14 (Pb-Free)	2500 / Tape & Reel
	MC33074DTBR2G	- T	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
	MC33074ADTBR2G	- T	TSSOP-14 (Pb-Free)	
	NCV33074ADTBR2G*	-1 F	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
	MC34074VDR2G		SOIC-14 (Pb-Free)	
	NCV34074VDR2G*	$T_A = -40^\circ \text{ to } +125^\circ \text{C}$	SOIC-14 (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u> *NCV prefix for automotive and other applications requiring unique site and control change requirements; AEC–Q100 qualified and PPAP

capable.

MARKING DIAGRAMS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



 DOCUMENT NUMBER:
 98AON38696E
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 WQFN10 2.6X2.6, 0.5P
 PAGE 1 OF 1

 ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor dees not convey any license under its patent rights nor the

rights of others.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or ncidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DESCRIPTION: SOIC-8 NB PAG				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

SOURCE 1/DRAIN 2

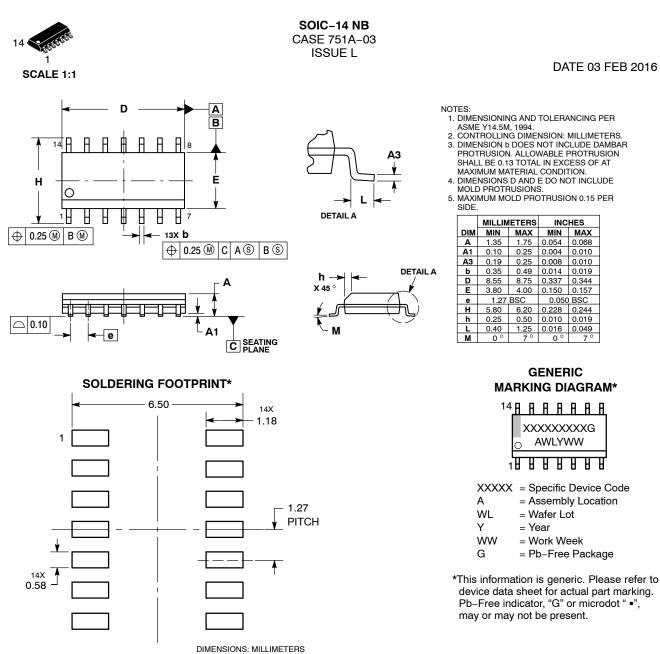
7.

8. GATE 1

COLLECTOR, #2

COLLECTOR, #1

COLLECTOR, #1


6.

7.

8

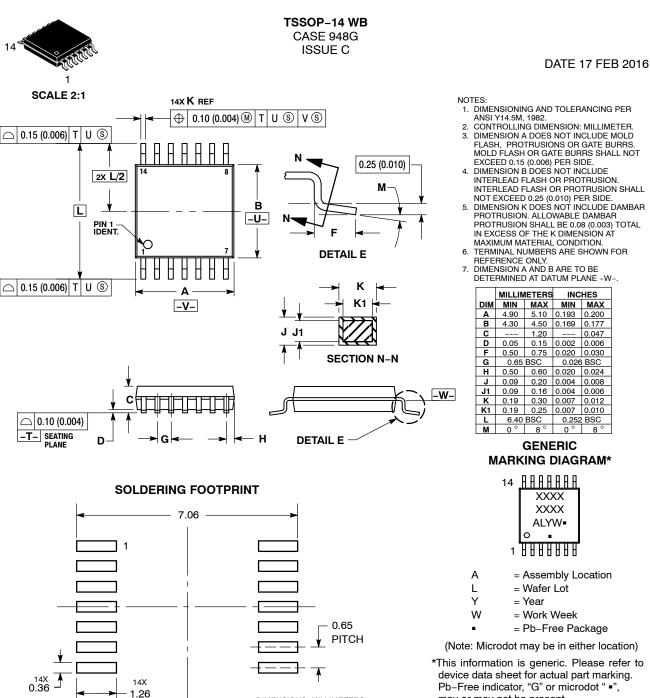
rights of others

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding or circuit, and specifically			

SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 9. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2			

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7