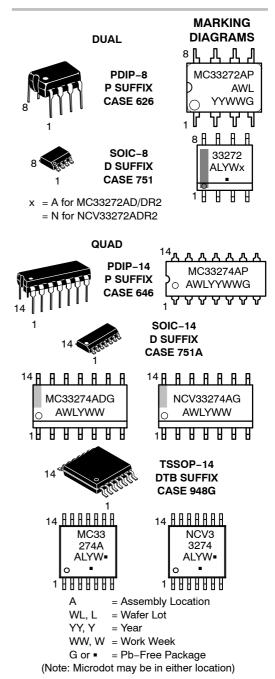
MC33272A, MC33274A, NCV33274A

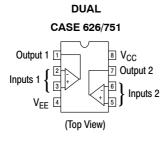
Operational Amplifiers, Single Supply, High Slew Rate, Low Input Offset Voltage

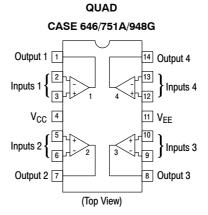
The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip–R–Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual –doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.


Features

- Input Offset Voltage Trimmed to 100 μV (Typ)
- Low Input Bias Current: 300 nALow Input Offset Current: 3.0 nA
- High Input Resistance: 16 MΩ
- Low Noise: $18 \text{ nV}/\sqrt{\text{Hz}}$ @ 1.0 kHz
- High Gain Bandwidth Product: 24 MHz @ 100 kHz
- High Slew Rate: 10 V/μs
- Power Bandwidth: 160 kHz
- Excellent Frequency Stability
- Unity Gain Stable: w/Capacitance Loads to 500 pF
- Large Output Voltage Swing: +14.1 V/ -14.6 V
- Low Total Harmonic Distortion: 0.003%
- Power Supply Drain Current: 2.15 mA per Amplifier
- Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V
- ESD Diodes Provide Added Protection to the Inputs
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- Pb-Free Packages are Available

ON Semiconductor®


http://onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Supply Voltage		V _{CC} to V _{EE}	+36	V
Input Differential Voltage Range		V_{IDR}	Note 1	V
Input Voltage Range		V _{IR}	Note 1	V
Output Short Circuit Duration (Note 2)		tsc	Indefinite	sec
Maximum Junction Temperature		TJ	+150	°C
Storage Temperature		T _{stg}	-60 to +150	°C
ESD Protection at Any Pin	- Human Body Model - Machine Model	V_{esd}	2000 200	V
Maximum Power Dissipation		P _D	Note 2	mW
Operating Temperature Range	MC33272A, MC33274A NCV33272A, NCV33274A	T _A	-40 to +85 -40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Either or both input voltages should not exceed V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded (see Figure 2).

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Voltage ($R_S = 10 \ \Omega, \ V_{CM} = 0 \ V, \ V_O = 0 \ V$) $ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V) $ $ T_A = +25^{\circ}C $ $ T_A = -40^{\circ} \ to \ +85^{\circ}C $ $ T_A = -40^{\circ} \ to \ +125^{\circ}C \ (NCV33272A) $ $ T_A = -40^{\circ} \ to \ +125^{\circ}C \ (NCV33274A) $ $ (V_{CC} = 5.0 \ V, \ V_{EE} = 0) $	3	V _{IO}	- - - -	0.1 - - -	1.0 1.8 2.5 3.5	mV
$T_A = +25^{\circ}C$			-	_	2.0	
Average Temperature Coefficient of Input Offset Voltage R_S = 10 Ω , V_{CM} = 0 V, V_O = 0 V, T_A = -40° to +125°C	3	ΔV _{IO} /ΔΤ	_	2.0	_	μV/°C
Input Bias Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	4, 5	I _{IB}	- -	300 -	650 800	nA
Input Offset Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$		l ^l iol	- -	3.0	65 80	nA
Common Mode Input Voltage Range ($\Delta V_{IO} = 5.0$ mV, $V_{O} = 0$ V) $T_{A} = +25$ °C	6	V _{ICR}	V _{EE}	to (V _{CC} -	1.8)	V
Large Signal Voltage Gain (V_O = 0 V to 10 V, R_L = 2.0 k Ω) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	7	A _{VOL}	90 86	100 -	- -	dB
$ \begin{aligned} & \text{Output Voltage Swing } \left(V_{ID} = \pm 1.0 \text{ V} \right) \\ & \left(V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V} \right) \\ & R_L = 2.0 \text{ k}\Omega \\ & R_L = 2.0 \text{ k}\Omega \\ & R_L = 10 \text{ k}\Omega \\ & R_L = 10 \text{ k}\Omega \\ & R_L = 10 \text{ k}\Omega \end{aligned} \\ & \left(V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V} \right) \\ & R_L = 2.0 \text{ k}\Omega \\ & R_L = 2.0 \text{ k}\Omega \end{aligned} $	8, 9, 12 10, 11	V _O + V _O - V _O + V _O - V _{OL} V _{OH}	13.4 - 13.4 - - 3.7	13.9 -13.9 14 -14.7	- -13.5 - -14.1 0.2 5.0	V
Common Mode Rejection (V _{in} = +13.2 V to -15 V)	13	CMR	80	100	_	dB
Power Supply Rejection V _{CC} /V _{EE} = +15 V/ -15 V, +5.0 V/ -15 V, +15 V/ -5.0 V	14, 15	PSR	80	105	-	dB
Output Short Circuit Current (V _{ID} = 1.0 V, Output to Ground) Source Sink	16	I _{SC}	+25 -25	+37 -37	- -	mA
Power Supply Current Per Amplifier ($V_O = 0 \text{ V}$) ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$) $T_A = +25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high}$ ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$) $T_A = +25^{\circ}\text{C}$	17	Icc	- - -	2.15 - -	2.75 3.0 2.75	mA

^{3.} MC33272A, MC33274A $T_{low} = -40^{\circ}C$ $T_{high} = +85^{\circ}C$ NCV33272A, NCV33274A $T_{low} = -40^{\circ}C$ $T_{high} = +125^{\circ}C$

 $\textbf{AC ELECTRICAL CHARACTERISTICS} \underbrace{ (V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_{A} = 25^{\circ}C, \text{ unless otherwise noted.)}$

Characteristics	Figure	Symbol	Min	Тур	Max	Unit
Slew Rate $(V_{in} = -10 \text{ V to } +10 \text{ V}, R_L = 2.0 \text{ k}\Omega, C_L = 100 \text{ pF}, A_V = +1.0 \text{ V})$	18, 33	SR	8.0	10	_	V/μs
Gain Bandwidth Product (f = 100 kHz)	19	GBW	17	24	-	MHz
AC Voltage Gain (R _L = 2.0 k Ω , V _O = 0 V, f = 20 kHz)	20, 21, 22	A _{VO}	-	65	-	dB
Unity Gain Bandwidth (Open Loop)		BW	-	5.5	-	MHz
Gain Margin (R _L = 2.0 k Ω , C _L = 0 pF)	23, 24, 26	A _m	-	12	-	dB
Phase Margin ($R_L = 2.0 \text{ k}\Omega$, $C_L = 0 \text{ pF}$)	23, 25, 26	φ _m	-	55	-	Deg
Channel Separation (f = 20 Hz to 20 kHz)	27	CS	-	-120	-	dB
Power Bandwidth ($V_O = 20 V_{pp}$, $R_L = 2.0 k\Omega$, THD $\leq 1.0\%$)		BW_P	-	160	-	kHz
Total Harmonic Distortion (R _L = 2.0 k Ω , f = 20 Hz to 20 kHz, V _O = 3.0 V _{rms} , A _V = +1.0)	28	THD	-	0.003	-	%
Open Loop Output Impedance (V _O = 0 V, f = 6.0 MHz)	29	Z _O	-	35	-	Ω
Differential Input Resistance (V _{CM} = 0 V)		R _{in}	-	16	-	МΩ
Differential Input Capacitance (V _{CM} = 0 V)		C _{in}	-	3.0	-	pF
Equivalent Input Noise Voltage (R _S = 100 Ω , f = 1.0 kHz)	30	e _n	-	18	-	nV/√Hz
Equivalent Input Noise Current (f = 1.0 kHz)	31	i _n	-	0.5	-	pA/√Hz

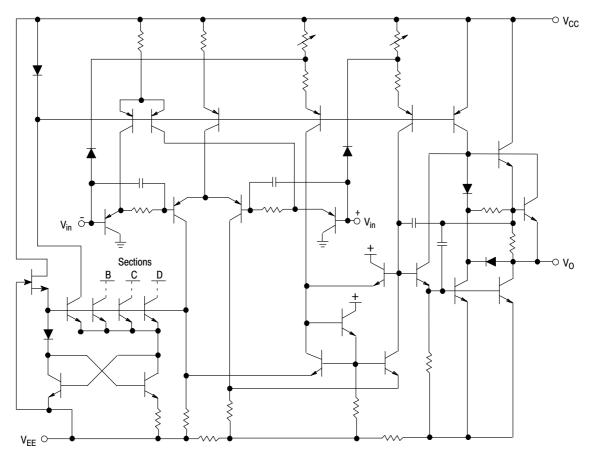


Figure 1. Equivalent Circuit Schematic (Each Amplifier)

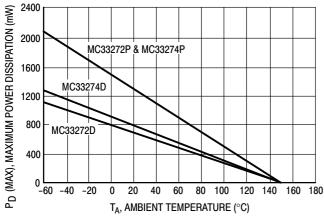


Figure 2. Maximum Power Dissipation versus Temperature

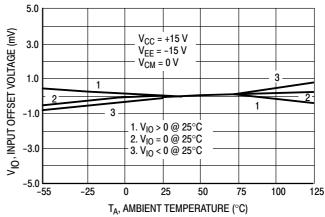


Figure 3. Input Offset Voltage versus Temperature for Typical Units

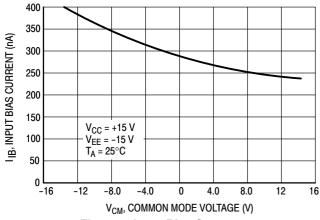


Figure 4. Input Bias Current versus Common Mode Voltage

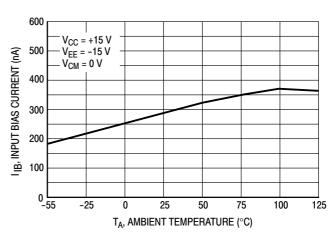


Figure 5. Input Bias Current versus Temperature

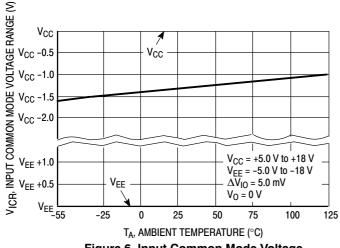


Figure 6. Input Common Mode Voltage Range versus Temperature

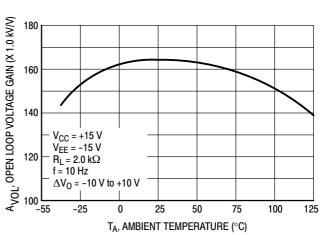


Figure 7. Open Loop Voltage Gain versus Temperature

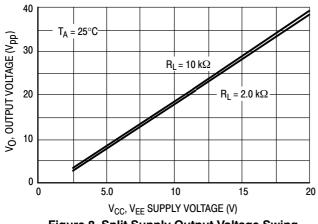


Figure 8. Split Supply Output Voltage Swing versus Supply Voltage

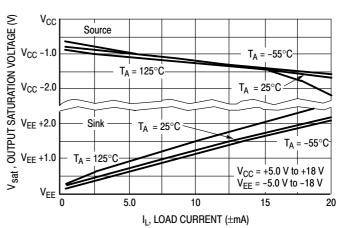


Figure 9. Split Supply Output Saturation Voltage versus Load Current

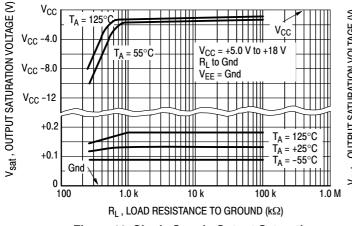


Figure 10. Single Supply Output Saturation Voltage versus Load Resistance to Ground

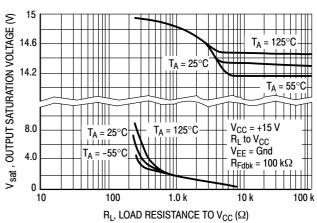


Figure 11. Single Supply Output Saturation Voltage versus Load Resistance to V_{CC}

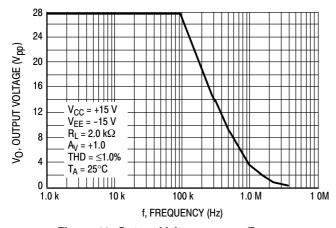


Figure 12. Output Voltage versus Frequency

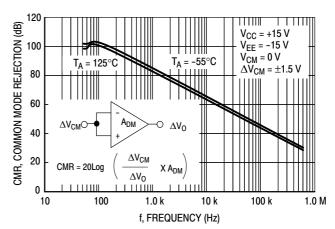


Figure 13. Common Mode Rejection versus Frequency

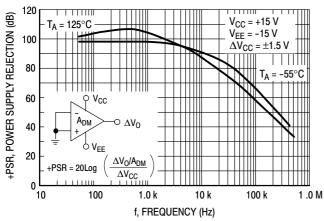


Figure 14. Positive Power Supply Rejection versus Frequency

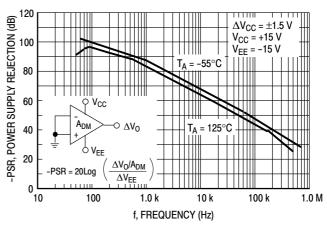


Figure 15. Negative Power Supply Rejection versus Frequency

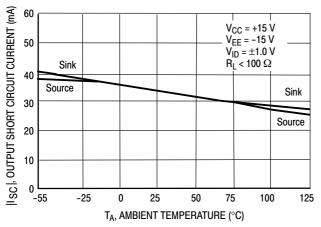


Figure 16. Output Short Circuit Current versus Temperature

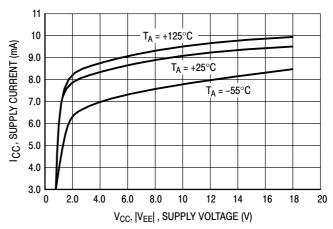


Figure 17. Supply Current versus Supply Voltage

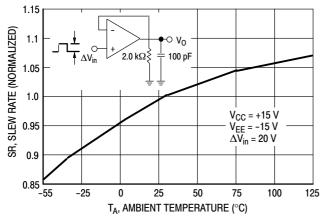


Figure 18. Normalized Slew Rate versus Temperature

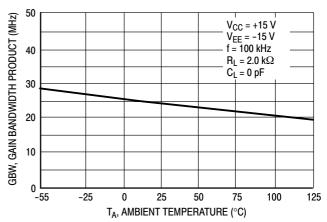


Figure 19. Gain Bandwidth Product versus Temperature

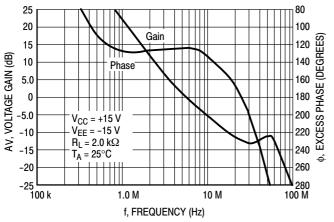


Figure 20. Voltage Gain and Phase versus Frequency

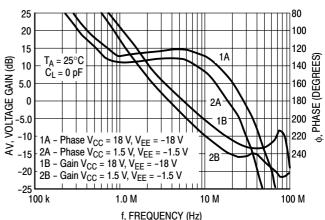


Figure 21. Gain and Phase versus Frequency

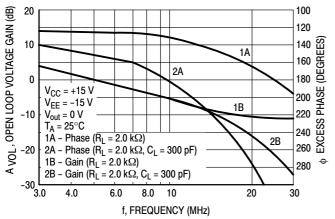


Figure 22. Open Loop Voltage Gain and Phase versus Frequency

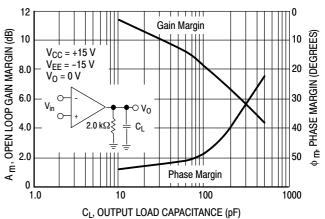


Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance

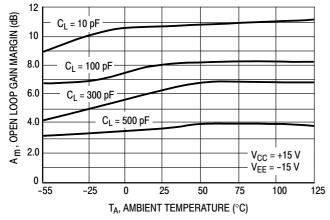


Figure 24. Open Loop Gain Margin versus Temperature

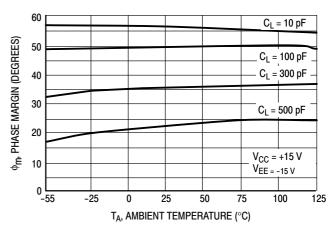


Figure 25. Phase Margin versus Temperature

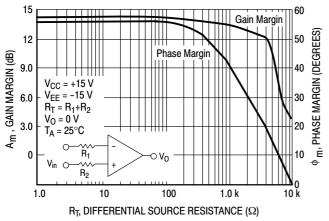


Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance

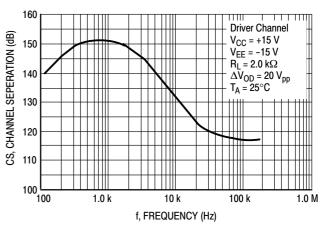


Figure 27. Channel Separation versus Frequency

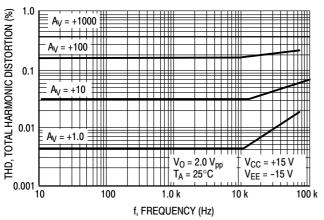


Figure 28. Total Harmonic Distortion versus Frequency

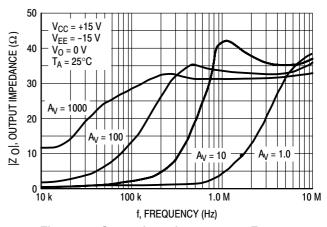


Figure 29. Output Impedance versus Frequency

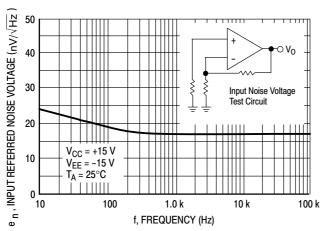


Figure 30. Input Referred Noise Voltage versus Frequency

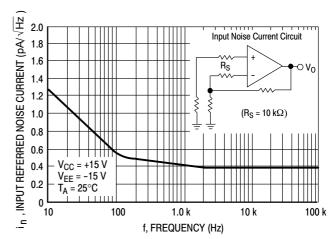


Figure 31. Input Referred Noise Current versus Frequency

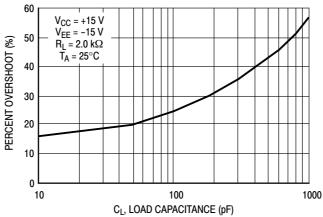


Figure 32. Percent Overshoot versus Load Capacitance

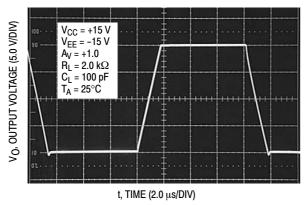


Figure 33. Non-inverting Amplifier Slew Rate for the MC33274

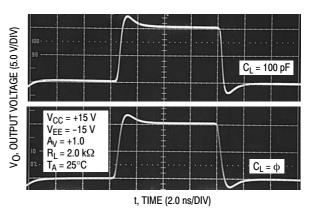


Figure 34. Non-inverting Amplifier Overshoot for the MC33274

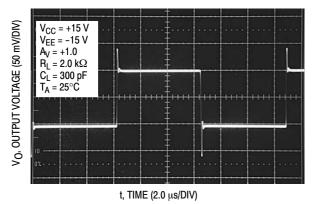


Figure 35. Small Signal Transient Response for MC33274

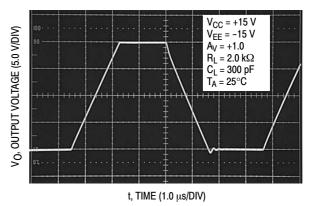
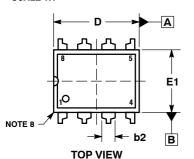
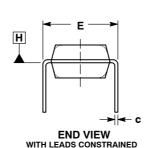


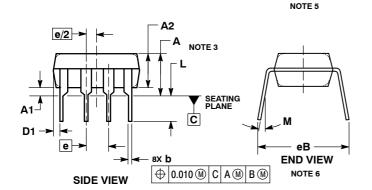
Figure 36. Large Signal Transient Response for MC33274

ORDERING INFORMATION

Device	Package	Shipping [†]
MC33272AD	SOIC-8	
MC33272ADG	SOIC-8 (Pb-Free)	98 Units / Rail
MC33272ADR2	SOIC-8	
MC33272ADR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC33272AP	PDIP-8	
MC33272APG	PDIP-8 (Pb-Free)	50 Units / Rail
NCV33272ADR2*	SOIC-8	
NCV33272ADR2G*	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC33274AD	SOIC-14	
MC33274ADG	SOIC-14 (Pb-Free)	55 Units / Rail
MC33274ADR2	SOIC-14	
MC33274ADR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC33274ADTBR2G	TSSOP-14 (Pb-Free)	
MC33274AP	PDIP-14	
MC33274APG	PDIP-14 (Pb-Free)	25 Units / Rail
NCV33274AD*	SOIC-14	
NCV33274ADG*	SOIC-14 (Pb-Free)	55 Units / Rail
NCV33274ADR2*	SOIC-14	
NCV33274ADR2G*	SOIC-14 (Pb-Free)	2500 / Tape & Reel
NCV33274ADTBR2G*	TSSOP-14 (Pb-Free)	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP


Capable.



PDIP-8 CASE 626-05 **ISSUE P**

DATE 22 APR 2015

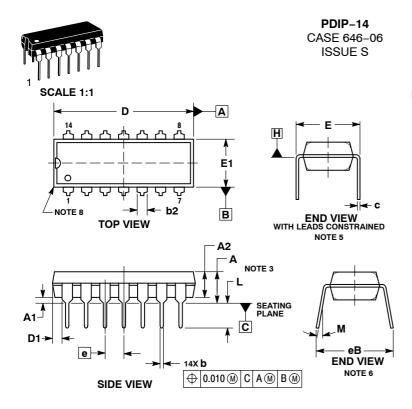
STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. V_{CC}

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
- DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
- NOT TO EXCEED 0.10 INCH.
 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
- PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eB		0.430		10.92
L	0.115	0.150	2.92	3.81
М		10°		10°

GENERIC MARKING DIAGRAM*

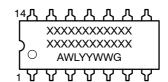

= Specific Device Code = Assembly Location

= Wafer Lot WL ΥY = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42420B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-8		PAGE 1 OF 1

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others


DATE 22 APR 2015

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
- DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
- PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
- LEADS, WHERE THE LEADS EXIT THE BODY.
 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eB		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC **MARKING DIAGRAM***

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot VV = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLES ON PAGE 2

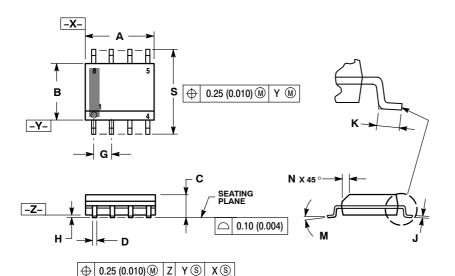
DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP-14		PAGE 1 OF 2	

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP-14 CASE 646-06 ISSUE S

DATE 22 APR 2015

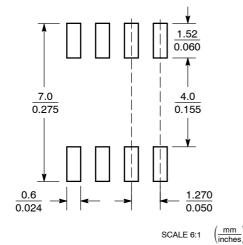
STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE	STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE	STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 15. ANODE/CATHODE 16. ANODE/CATHODE 17. ANODE/CATHODE 18. ANODE/CATHODE 19. ANODE/CATHODE 19. ANODE/CATHODE 19. ANODE/CATHODE 19. ANODE/CATHODE


DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-14		PAGE 2 OF 2

ON Semiconductor and all are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

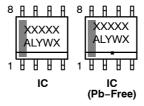
SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011



NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
s	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year

= Work Week = Pb-Free Package

XXXXXX XXXXXX AYWW AYWW H **Discrete Discrete** (Pb-Free)

XXXXXX = Specific Device Code Α = Assembly Location

ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		

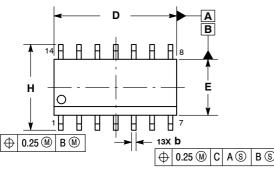
ON Semiconductor and illumate and image are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

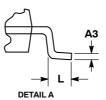
SOIC-8 NB CASE 751-07 ISSUE AK

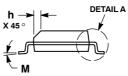
DATE 16 FEB 2011

STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER COMMON	2. BIAS 1	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE
4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	5. GROUND 6. BIAS 2 7. INPUT	4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 4 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/ 3. COMMON CATHODE/ 4. I/O LINE 3 5. COMMON ANODE/GN 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GN		STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		
DOCUMENT NUMBER:		Electronic versions are uncontrolled except when ac Printed versions are uncontrolled except when stamp	

DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2


ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




0.10

SOIC-14 NB CASE 751A-03 **ISSUE L**

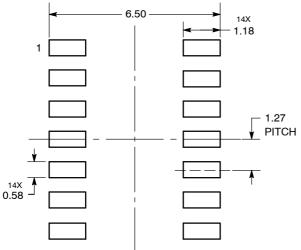
DATE 03 FEB 2016

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

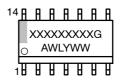
 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MANUAL MEDICAL PROTRUSION. MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS D AND E DO NOT INCLUDE


 - MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
А3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

SOLDERING FOOTPRINT*


е

DIMENSIONS: MILLIMETERS

C SEATING PLANE

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location Α

WL = Wafer Lot Υ = Year ww = Work Week G = Pb-Free Package

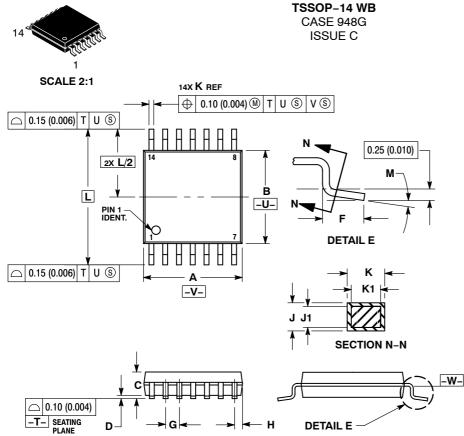
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2	

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

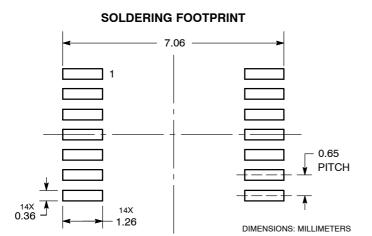

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

ON Semiconductor and (II) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


DATE 17 FEB 2016

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR DEEEDENGE ONLY.
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С	-	1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0°	8°	0 °	8 °

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

= Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1

💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG