300 mA LDO Regulator, Low Dropout Voltage, Ultra Low Noise, High PSRR with Power Good

NCV8164C

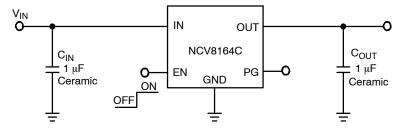
The NCV8164C is a 300 mA LDO, next generation of high PSRR, ultra–low noise and low dropout regulators with Power Good open collector output. Designed to meet the requirements of RF and sensitive analog circuits, the NCV8164C device provides ultra–low noise, high PSRR and low quiescent current. The device also offer excellent load/line transients. The NCV8164C is designed to work with a 1 μF input and a 1 μF output ceramic capacitor. It is available in industry standard TSOP–5, WDFNW6 0.65P, 2 mm x 2 mm and DFNW8 0.65P, 3 mm x 3 mm.

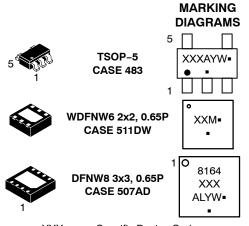
Features

- Operating Input Voltage Range: 1.6 V to 5.0 V
- Available in Fixed Voltage Option: 1.2 V to 4.5 V
- Adjustable Version Reference Voltage: 1.2 V
- ±2% Accuracy Over Load and Temperature
- Ultra Low Quiescent Current Typ. 30 μA
- Standby Current: Typ. 0.1 μA
- Very Low Dropout: 110 mV at 300 mA for 3.3 V Variant
- Ultra High PSRR: Typ. 85 dB at 10 mA, f = 1 kHz
- Ultra Low Noise: 9 µV_{RMS} (Fixed Version)
- Stable with a 1 μF Small Case Size Ceramic Capacitors
- Available in TSOP–5 3 mm x 1.5 mm x 1 mm CASE 483
 - ◆ WDFNW6 2 mm x 2 mm x 0.75 mm CASE 511DW
 - ◆ DFNW8 3 mm x 3 mm x 0.9 mm CASE 507AD
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Communication Systems
- In-Vehicle Networking
- Telematics, Infotainment and Clusters
- General Purpose Automotive

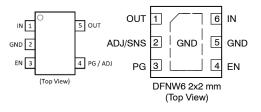



Figure 1. Typical Application Schematic

1

ON Semiconductor®

www.onsemi.com




XXX = Specific Device Code A = Assembly Location

L = Wafer Lot
M = Month Code
Y = Year
W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 8 of this data sheet.

Table 1. PIN FUNCTION DESCRIPTION

Pin No. TSOP-5	Pin No. WDFNW6	Pin No. DFNW8	Pin Name	Description	
1	6	8	IN	Input voltage supply pin	
5	1	1	OUT	Regulated output voltage. The output should be bypassed with small 1 μF ceramic capacitor	
3	4	7	EN	Chip enable: Applying $V_{EN} < 0.2 \ V$ disables the regulator, Pulling $V_{EN} > 0.7 \ V$ enables the LDO	
4 / –	3	3	PG	Power Good, open collector. Use 10 k Ω to 100 k Ω pull–up resistor connected output or input voltage	
2	5	6	GND	Common ground connection	
- / 4	2	2	ADJ	Adjustable output feedback pin (for adjustable version only)	
=	2	2	SNS	Sense feedback pin. Must be connected to OUT pin on PCB (for fixed versions only)	
-	-	4, 5	N/C	Not connected, pin can be tied to ground plane for better power dissipation	
_	EPAD	EPAD	EPAD	Expose pad should be tied to ground plane for better power dissipation	

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	-0.3 to 5.3	V
Output Voltage	V _{OUT}	-0.3 to V _{IN} +0.3, max. 5.3	V
Chip Enable Input	V _{CE}	-0.3 to 5.3	V
Power Good Voltage	V_{PG}	-0.3 to 5.3	V
Power Good Current	I _{PG}	30	mA
Output Short Circuit Duration	t _{SC}	unlimited	S
Maximum Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	٧
ESD Capability, Charged Device Model (Note 2)	ESD _{CDM}	1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
ESD Charged Device Model tested per EIA/JESD22-C101, Field Induced Charge Model

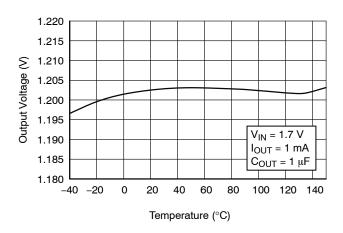
Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
THERMAL CHARACTERISTICS, TSOP-5 PACKAGE			•
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ heta JA}$	158	°C/W
Thermal Resistance, Junction-to-Case (top)	$R_{ heta JC(top)}$	155	°C/W
Thermal Resistance, Junction-to-Case (bottom) (Note 4)	$R_{ heta JC(bot)}$	102	°C/W
Thermal Resistance, Junction-to-Board	$R_{ heta JB}$	197	°C/W
Characterization Parameter, Junction-to-Top	Ψ_{JT}	40	°C/W
Characterization Parameter, Junction-to-Board	Ψ_{JB}	82	°C/W
THERMAL CHARACTERISTICS, WDFNW6-2X2, 0.65 PITCH PACKAGE	GE		
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ hetaJA}$	51	°C/W
Thermal Resistance, Junction-to-Case (top)	$R_{\theta JC(top)}$	142	°C/W
Thermal Resistance, Junction-to-Case (bottom) (Note 4)	$R_{ heta JC(bot)}$	2.0	°C/W
Thermal Resistance, Junction-to-Board	$R_{ hetaJB}$	117	°C/W
Characterization Parameter, Junction-to-Top	Ψ_{JT}	1.9	°C/W
Characterization Parameter, Junction-to-Board	Ψ_{JB}	7.7	°C/W
THERMAL CHARACTERISTICS, DFNW8-3X3, 0.65 PITCH PACKAGE	Ē		
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ hetaJA}$	50	°C/W
Thermal Resistance, Junction-to-Case (top)	$R_{\theta JC(top)}$	142	°C/W
Thermal Resistance, Junction-to-Case (bottom) (Note 4)	$R_{\theta JC(bot)}$	7.9	°C/W
Thermal Resistance, Junction-to-Board	$R_{ heta JB}$	125	°C/W
Characterization Parameter, Junction-to-Top	Ψ_{JT}	2.0	°C/W
Characterization Parameter, Junction-to-Board	Ψ_{JB}	7.5	°C/W

The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a high-K board, following the JEDEC51.7 guidelines with assumptions as above, in an environment described in JESD51-2a.
 The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the IC exposed pad. Test description can be found in the ANSI SEMI standard G30-88.

Parameter	Test Co	nditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage			V_{IN}	1.6		5.0	٧
Output Voltage Accuracy	$V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V to } 5.0 \text{ V}, \\ 0.1 \text{ mA} \le I_{OUT} \le 300 \text{ mA}$		V _{OUT}	-2		+2	%
Reference Voltage (Adjustable Ver. ADJ pin connected to OUT)	$V_{IN} = 1.6 \text{ V to } 5.0 \text{ V},$ 0.1 mA \le I _{OUT} \le 300 mA		V _{ADJ}	1.176	1.2	1.224	V
Line Regulation	V _{OUT(NOM)} + 0.5	5 V ≤ V _{IN} ≤ 5.0 V	Line _{Reg}		0.5		mV/V
Load Regulation	I _{OUT} = 1 mA	A to 300 mA	Load _{Reg}		2		mV
Dropout Voltage (Note 6)	I _{OUT} = 300 mA	V _{OUT(NOM)} = 1.5 V	V_{DO}		170	295	mV
TSOP-5, WDFNW6		V _{OUT(NOM)} = 1.8 V			155	255	
		V _{OUT(NOM)} = 2.5 V	1		125	200	
		V _{OUT(NOM)} = 2.8 V	1		115	185	1
		V _{OUT(NOM)} = 3.0 V	1		113	177	
		V _{OUT(NOM)} = 3.3 V	1		110	170	1
		V _{OUT(NOM)} = 4.5 V	1		95	135	1
Dropout Voltage (Note 6)	I _{OUT} = 300 mA	V _{OUT(NOM)} = 1.5 V	V_{DO}		180	315	mV
DFNW8		V _{OUT(NOM)} = 1.8 V	1		165	275	
		V _{OUT(NOM)} = 2.5 V	1		140	220	1
		V _{OUT(NOM)} = 2.8 V	1		130	205	
		V _{OUT(NOM)} = 3.0 V	1		127	197	
		V _{OUT(NOM)} = 3.3 V	1		125	190	1
		V _{OUT(NOM)} = 4.5 V	1		112	170	
Output Current Limit	V _{OUT} = 90%	V _{OUT(NOM)}	I _{CL}	350	560		mA
Short Circuit Current	V _{OUT}	= 0 V	I _{SC}		580		1
Quiescent Current	I _{OUT} =	0 mA	ΙQ		30	40	μΑ
Shutdown Current	V _{EN} ≤	0.4 V	I _{DIS}		0.01	1.5	μΑ
EN Pin Threshold Voltage	EN Input Voltage "H"		V_{ENH}	0.7			V
	EN Input \	/oltage "L"	V _{ENL}			0.2	1
EN Pull Down Current	V _{EN} =	5.0 V	I _{EN}		0.2	0.6	μΑ
Power Good Threshold Voltage	Output Volta	age Raising	V_{PGUP}		95		%
	Output Volt	age Falling	V_{PGDW}		90		
Power Good Output Voltage Low	I _{PG} = 5 mA,	Open drain	V_{PGLO}			0.3	V
Turn-On Time (Note 7)	C _{OUT} = 1 μF, From to V _{OUT} = 95	n assertion of V _{EN} % V _{OUT(NOM)}			120		μs
Power Supply Rejection Ratio	$V_{OUT(NOM)} = 3.3 V,$	f = 100 Hz	P _{SRR}		83		dB
(Note 7)	I _{OUT} = 10 mA	f = 1 kHz		'	85		
		f = 10 kHz	1		80	1	
		f = 100 kHz]]	61]	
Output Voltage Noise (Fixed Ver.)	f = 10 Hz to 100 kHz	I _{OUT} = 10 mA	V_N		9		μV_{RMS}
Thermal Shutdown Threshold	Temperat	Temperature rising			165		°C
(Note 7)	Temperature	T _{HYST}		15		°C	
Active output discharge resistance	V _{EN} < 0.2 V, Version A only		R _{DIS}		260		Ω

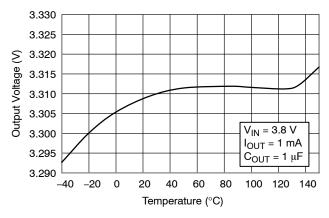
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


^{5.} Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at $T_J = T_A = 25^{\circ}C$.

^{6.} Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible. Dropout voltage is characterized when V_{OUT} falls 3% below V_{OUT(NOM)}.

7. Guaranteed by design and characterization.

TYPICAL CHARACTERISTICS


350 325

1.830 1.825 () 1.820 1.815 1.810 1.805 1.800 $V_{IN} = 2.3 V$ $I_{OUT} = 1 \text{ mA}$ 1.795 $C_{OUT} = 1 \mu F$ 1.790 100 120 140 -40 -20 0 20 40 60 80 Temperature (°C)

Figure 2. Output Voltage vs. Temperature – $V_{OUT} = 1.2 \text{ V}$

Figure 3. Output Voltage vs. Temperature – $V_{OUT} = 1.8 \text{ V}$

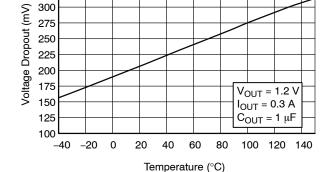
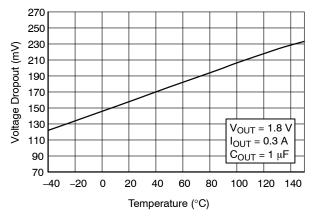



Figure 4. Output Voltage vs. Temperature – $V_{OUT} = 3.3 \text{ V}$

Figure 5. Dropout Voltage vs. Temperature – $V_{OUT} = 1.2 \text{ V}$

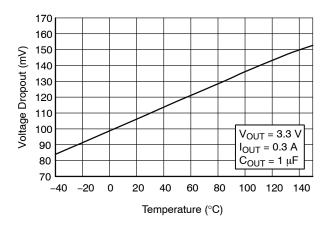


Figure 6. Dropout Voltage vs. Temperature – $V_{OUT} = 1.8 \text{ V}$

Figure 7. Dropout Voltage vs. Temperature – $V_{OUT} = 3.3 \text{ V}$

TYPICAL CHARACTERISTICS (continued)

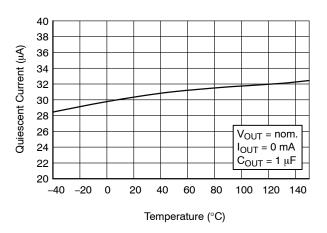


Figure 8. Quiescent Current va Temperature

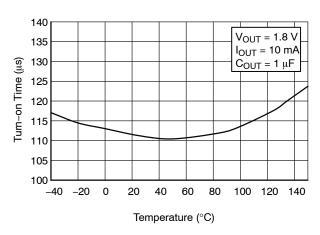


Figure 9. Turn-on Time vs. Temperature

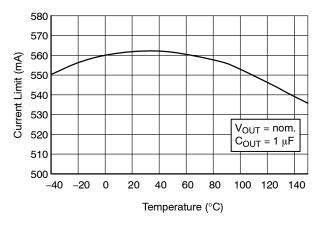


Figure 10. Current Limit vs. Temperature

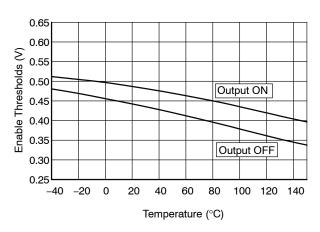


Figure 11. Enable Thresholds vs Temperature

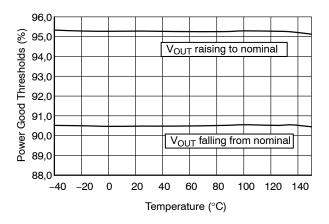


Figure 12. Power Good Threshold vs. Temperature

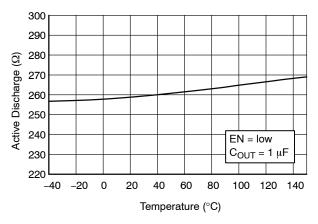


Figure 13. Active Discharge Resistance vs. Temperature

TYPICAL CHARACTERISTICS (continued)

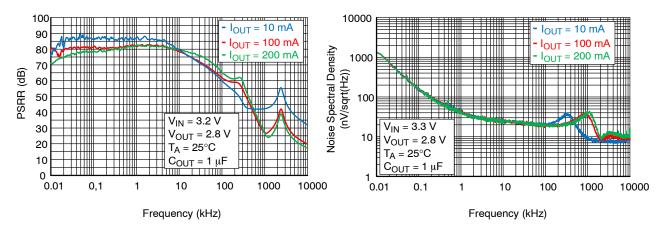


Figure 14. Power Supply Rejection Ration for V_{OUT} = 2.8 V, C_{OUT} = 1 μF

Figure 15. Output Voltage Noise Spectral Density for $V_{OUT} = 2.8 \text{ V}$, $C_{OUT} = 1 \mu\text{F}$

APPLICATIONS INFORMATION

The NCV8164C is the member of new family of high output current and low dropout regulators which delivers low quiescent and ground current consumption, good noise and power supply ripple rejection ratio performance. The NCV8164C incorporates EN pin and power good output for simple controlling by MCU or logic. Standard features include current limiting, soft–start feature and thermal protection.

Input Decoupling (CIN)

It is recommended to connect at least 1 μF ceramic X5R or X7R capacitor between IN and GND pin of the device. This capacitor will provide a low impedance path for any unwanted AC signals or noise superimposed onto constant input voltage. The good input capacitor will limit the influence of input trace inductances and source resistance during sudden load current changes. Higher capacitance and lower ESR capacitors will improve the overall line transient response.

Output Decoupling (COUT)

The NCV8164C does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The device is designed to be stable with standard ceramics capacitors with values of 1 μ F or greater. The X5R and X7R types have the lowest capacitance variations over temperature thus they are recommended.

Power Good Output Connection

The NCV8164C include Power Good functionality for better interfacing to MCU system. Power Good output is open collector type, capable to sink up to 10 mA. Recommended operating current is between 10 μA and

1 mA to obtain low saturation voltage. External pull-up resistor can be connected to any voltage up to 5.0 V (please see Absolute Maximum Ratings table).

Power Dissipation and Heat Sinking

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to +125°C, however device is capable to work up to junction temperature +150°C. The maximum power dissipation the NCV8164C can handle is given by:

$$P_{D(MAX)} = \frac{\left[T_{J(MAX)} - T_{A}\right]}{R_{\theta,JA}}$$
 (eq. 1)

The power dissipated by the NCV8164C for given application conditions can be calculated from the following equations:

$$P_D \approx V_{IN}(I_{GND}(I_{OLIT})) + I_{OLIT}(V_{IN} - V_{OLIT})$$
 (eq. 2)

or

$$V_{\text{IN(MAX)}} \approx \frac{P_{\text{D(MAX)}} + (V_{\text{OUT}} \times I_{\text{OUT}})}{I_{\text{OUT}} + I_{\text{GND}}}$$
 (eq. 3)

Hints

VIN and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the NCV8164C, and make traces as short as possible.

Adjustable Version

Not only adjustable version, but also any fixed version can be used to create adjustable voltage, where original fixed voltage becomes reference voltage for resistor divider and feedback loop. Output voltage can be equal or higher than original fixed option, while possible range is from 1.2 V up to 4.5 V. Figure 16 shows how to add external resistors to increase output voltage above fixed value.

Output voltage is then given by equation

$$V_{OUT} = V_{FIX} \times (1 + R1/R2)$$
 (eq. 4)

where V_{FIX} is voltage of original fixed version (from 1.2 V up to 4.5 V) or adjustable version (1.2 V). Do not operate the device at output voltage about 4.7 V, as device can be damaged.

In order to avoid influence of current flowing into SNS pin to output voltage accuracy (SNS current varies with voltage option and temperature, typical value is 300 nA) it is recommended to use values of R1 and R2 below 500 k Ω .

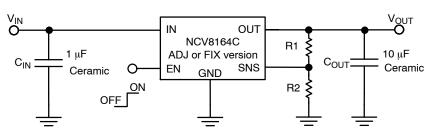
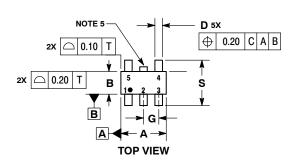


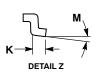
Figure 16. Adjustable Variant Application

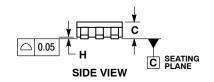
Please note that output noise is amplified by V_{OUT}/V_{FIX} ratio. For example, if original 1.2 V fixed variant is used to create 3.6 V output voltage, output noise is increased 3.6 / 1.2 = 3 times and real value will be $3 \times 9 \,\mu Vrms = 27 \,\mu Vrms$. For noise sensitive applications it is recommended to use as

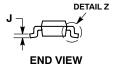
high fixed variant as possible – for example in case above it is better to use 3.3 V fixed variant to create 3.6 V output voltage, as output noise will be amplified only $3.6 / 3.3 = 1.09 \times (9.8 \,\mu\text{Vrms})$.

ORDERING INFORMATION

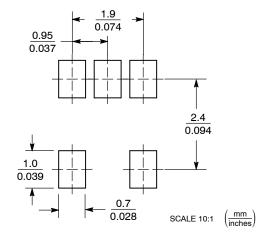

Device Part No.	Wafer Part	Marking	Package Option	Package	Shipping †
NCV8164CSN180T1G	A0C00HJ-FNT8	EJ	N/A	TSOP5 (Pb-Free)	3000 / Tape & Reel
NCV8164CSN280T1G	A0C00HH-FNT8	EK	N/A	TSOP5 (Pb-Free)	3000 / Tape & Reel
NCV8164CSNADJT1G	A0C00HP-FNT8	E4	N/A	TSOP5 (Pb-Free)	3000 / Tape & Reel
NCV8164CMTW180TAG	A0C00HJ-FNT8	HJ	Wettable	WDFNW6 2 x 2 (WF, Pb-Free)	3000 / Tape & Reel
NCV8164CMTW280TAG	A0C00HH-FNT8	HK	Wettable	WDFNW6 2 x 2 (WF, Pb-Free)	3000 / Tape & Reel
NCV8164CMTW290TAG	A0C00HK-FNT8	НН	Wettable	WDFNW6 2 x 2 (WF, Pb-Free)	3000 / Tape & Reel
NCV8164CMTWADJTAG	A0C00HP-FNT8	H2	Wettable	WDFNW6 2 x 2 (WF, Pb-Free)	3000 / Tape & Reel
NCV8164CAMLADJTCG	A0C00HP-FNT8	G2	Wettable	DFNW8 3 x 3 (WF, Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
C	0.90	1.10	
D	0.25	0.50	
G	0.95	BSC	
Н	0.01 0.10		
J	0.10	0.26	
K	0.20	0.60	
М	0 °	10 °	
S	2 50	3.00	

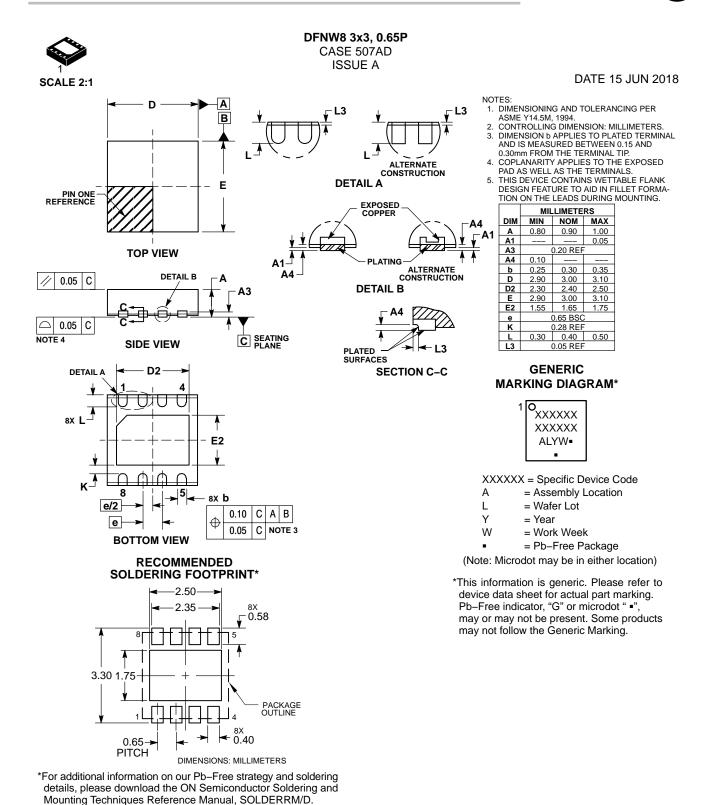
SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

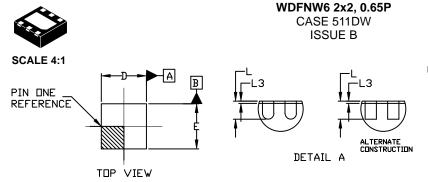
= Assembly Location = Date Code = Year = Pb-Free Package

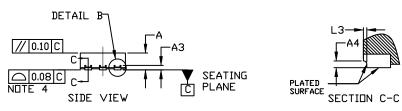

= Work Week W = Pb-Free Package

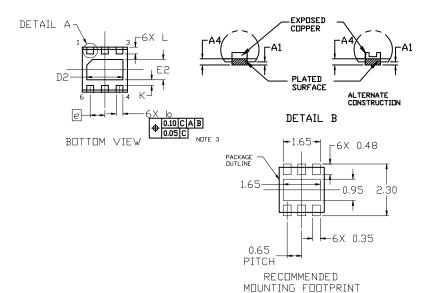
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-5		PAGE 1 OF 1


ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




DOCUMENT NUMBER:	98AON17792G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	DFNW8 3x3, 0.65P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 15 JUN 2018

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM THE TERMINAL TIP.
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- 5. THIS DEVICE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
Α	0.70	0.75	0.80
A1			0.05
A3	Ú	0.20 REF	-
Α4	0.10		
b	0.25	0.30	0.35
D	1.90	2.00	2.10
D2	1.50	1.60	1.70
E	1.90	2.00	2.10
E2	0.80	0.90	1.00
ď	0.65 BSC		
K	0.25 REF		
L	0.25	0.30	0.35
L3	0.05 REF		

GENERIC MARKING DIAGRAM*

M = Month Code= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	UMENT NUMBER: 98AON79327G Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO		
DESCRIPTION:	WDFNW6 2x2, 0.65P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ

NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1

ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA-7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G

NCP715MX30TBG NCV8702MX25TCG TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1

NCV8170BMX300TCG NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 NCP154MX180300TAG AP2113AMTR-G1

NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S-19214B00A-V5T2U7 S-19214B50A-V5T2U7 S-19213B50A-V5T2U7 S-19214BC0A-E8T1U7*1 S-19213B00A-V5T2U7 S-19213B33A-V5T2U7 S-19213BC0A-V5T2U7