NCV8401A, NCV8401B

Self-Protected Low Side Driver with Temperature and Current Limit

NCV8401A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

$\mathbf{V}_{\text {Dss }}$ (Clamped)	$\mathbf{R}_{\text {DS(ON) }}$ TYP	\mathbf{I}_{D} MAX (Limited)
42 V	$23 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	$33 \mathrm{~A}^{*}$

*Max current may be limited below this value depending on input conditions.

ORDERING INFORMATION

Device	Package	Shipping †
NCV8401ADTRKG	DPAK $($ Pb-Free $)$	2500/Tape \& Reel
NCV8401BDTRKG	DPAK (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS $\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	$V_{\text {DSS }}$	42	V
Drain-to-Gate Voltage Internally Clamped $\quad\left(\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega\right)$	$V_{\text {DGR }}$	42	V
Gate-to-Source Voltage	V_{GS}	± 14	V
Drain Current - Continuous	ID	Internally Limited	
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	P_{D}	$\begin{aligned} & 1.1 \\ & 2.0 \end{aligned}$	W
Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$\begin{aligned} & \hline \mathrm{R}_{\text {QJC }} \\ & \mathrm{R}_{\text {QJA }} \\ & \mathrm{R}_{\text {日JA }} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 110 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Single Pulse Drain-to-Source Avalanche Energy $\left(\mathrm{V}_{\mathrm{DD}}=25 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=3.65 \mathrm{Apk}, \mathrm{L}=120 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{~T}_{\mathrm{Jstart}}=150^{\circ} \mathrm{C}\right)($ Note 3)	$\mathrm{E}_{\text {AS }}$	800	mJ
Load Dump Voltage ($\mathrm{V}_{\mathrm{GS}}=0$ and $10 \mathrm{~V}, \mathrm{R}_{\mathrm{l}}=2.0 \Omega, \mathrm{R}_{\mathrm{L}}=3.0 \Omega, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}$)	$\mathrm{V}_{\text {LD }}$	65	V
Operating Junction Temperature	T_{J}	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected

1. Minimum FR4 PCB, steady state.
2. Mounted onto a $2^{\prime \prime}$ square FR4 board
($1^{\prime \prime}$ square, 2 oz. Cu $0.06^{\prime \prime}$ thick single-sided, $\mathrm{t}=$ steady state).
3. Not subject to production testing

Figure 1. Voltage and Current Convention

NCV8401A, NCV8401B

MOSFET ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Clamped Breakdown Voltage $\begin{aligned} & \left(V_{G S}=0 \mathrm{Vdc}, I_{D}=250 \mu \mathrm{Adc}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, I_{\mathrm{D}}=250 \mu \mathrm{Adc}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}\right)(\text { Note } 4) \end{aligned}$	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 46 \\ & 44 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	Vdc
$\begin{aligned} & \text { Zero Gate Voltage Drain Current } \\ & \left(\mathrm{V}_{\mathrm{DS}}=32 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=32 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)(\text { Note } 4) \end{aligned}$	$\mathrm{I}_{\text {DSS }}$		$\begin{aligned} & 1.5 \\ & 6.5 \end{aligned}$	5.0	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Gate Input Current } \\ & \qquad\left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right) \end{aligned}$	IGSSF		50	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.2 \mathrm{mAdc}\right)$ Threshold Temperature Coefficient	$\mathrm{V}_{\text {GS(th) }}$	1.0	$\begin{aligned} & 1.8 \\ & 5.0 \end{aligned}$	2.0	$\begin{gathered} \mathrm{Vdc} \\ -\mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \hline \text { Static Drain-to-Source On-Resistance (Note 5) } \\ & \left(V_{G S}=10 \mathrm{Vdc}, I_{D}=5.0 \mathrm{Adc}, T_{J} @ 25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, I_{\mathrm{D}}=5.0 \mathrm{Adc}, \mathrm{~T}_{J} @ 150^{\circ} \mathrm{C}\right)(\text { Note 4) } \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		$\begin{aligned} & 23 \\ & 43 \end{aligned}$	$\begin{aligned} & 29 \\ & 55 \end{aligned}$	$\mathrm{m} \Omega$
$\begin{aligned} & \text { Static Drain-to-Source On-Resistance (Note 5) } \\ & \left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{Adc}, \mathrm{~T}_{J} @ 25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{Adc}, \mathrm{~T}_{J} @ 150^{\circ} \mathrm{C}\right)(\text { Note 4) } \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		$\begin{aligned} & 28 \\ & 50 \end{aligned}$	$\begin{aligned} & 34 \\ & 60 \end{aligned}$	$\mathrm{m} \Omega$
Source-Drain Forward On Voltage $\left(\mathrm{I}_{\mathrm{S}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	$\mathrm{V}_{\text {SD }}$		0.80	1.1	V

SWITCHING CHARACTERISTICS (Note 4)

Turn-ON Time ($10 \% \mathrm{~V}_{\text {IN }}$ to $90 \% \mathrm{I}_{\mathrm{D}}$)		ton	41	50	$\mu \mathrm{s}$
Turn-OFF Time ($90 \% \mathrm{~V}_{\text {IN }}$ to $10 \% \mathrm{I}_{\mathrm{D}}$)		toff	129	150	
Turn-ON Time ($10 \% \mathrm{~V}_{\text {IN }}$ to $90 \% \mathrm{I}_{\mathrm{D}}$)	$\begin{aligned} \mathrm{V}_{I N} & =0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}} & =1.0 \mathrm{~A}, \mathrm{Ext}_{\mathrm{G}}=2.5 \Omega \end{aligned}$	ton	16	25	
Turn-OFF Time ($90 \% \mathrm{~V}_{\text {IN }}$ to $10 \% \mathrm{I}_{\mathrm{D}}$)		toff	164	180	
Slew-Rate ON (80\% V VS to $50 \% \mathrm{~V}_{\mathrm{DS}}$)	$\begin{gathered} \mathrm{V}_{\text {in }}=0 \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ R_{\mathrm{L}}=4.7 \Omega \end{gathered}$	- $\mathrm{dV}_{\text {DS }} / \mathrm{dt}_{\text {ON }}$	1.27	2.0	V/us
Slew-Rate OFF ($50 \% \mathrm{~V}_{\text {DS }}$ to $80 \% \mathrm{~V}_{\text {DS }}$)		$\mathrm{d} \mathrm{V}_{\text {DS }} / \mathrm{dt}_{\text {OFF }}$	0.36	0.75	

SELF PROTECTION CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Current Limit	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}(\text { Note } 4) \end{gathered}$	ILIM	$\begin{aligned} & 25 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 30 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 21 \end{aligned}$	Adc
	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \text { (Note 4) } \end{gathered}$		$\begin{aligned} & \hline 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \end{aligned}$	
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$ (Note 4)	TLIM(off)	150	175	200	${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$	Δ TIIM(on)		15		${ }^{\circ} \mathrm{C}$
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Note 4)	TLIM(off)	150	165	185	${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\Delta \mathrm{T}_{\text {LIM }}$ (on)		15		${ }^{\circ} \mathrm{C}$

GATE INPUT CHARACTERISTICS (Note 4)

Device ON Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$	$\mathrm{I}_{\text {GON }}$	50	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$		400	700	
Current Limit Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GCL}}$	0.1	0.5	mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		0.7	1.0	
Thermal Limit Fault Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{I}_{\text {GTL }}$	0.6	1.0	mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		2.0	4.0	

ESD ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 4)

Electro-Static Discharge Capability Human Body Model (HBM) Machine Model (MM)	ESD				V

4. Not subject to production testing.
5. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

NCV8401A, NCV8401B

TYPICAL PERFORMANCE CURVES

Figure 2. Single Pulse Maximum Switch-off Current vs. Load Inductance

Figure 4. Single Pulse Maximum Inductive Switch-off Current vs. Time in Clamp

Figure 6. On-state Output Characteristics at $25^{\circ} \mathrm{C}$

Figure 3. Single Pulse Maximum Switching Energy vs. Load Inductance

Figure 5. Single Pulse Maximum Inductive Switching Energy vs. Time in Clamp

Figure 7. Transfer Characteristics ($\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$)

NCV8401A, NCV8401B

TYPICAL PERFORMANCE CURVES

Figure 8. RDS(on) $^{\text {vs. Gate-Source Voltage }}$

Figure 10. Normalized $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ vs. Temperature ($\mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$)

Figure 12. Current Limit vs. Junction Temperature ($\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$)

Figure 9. RDS(on) $^{\text {vs. Drain Current }}$

Figure 11. Current Limit vs. Gate-Source Voltage ($\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$)

Figure 13. Drain-to-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$

Figure 14. Normalized Threshold Voltage vs.
Temperature ($\mathrm{I}_{\mathrm{D}}=1.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$)

Figure 16. Resistive Load Switching Time vs.
Gate-Source Voltage
$\left(V_{D D}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=0 \Omega\right)$

Figure 18. Resistive Load Switching Time vs. Gate Resistance ($\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$)

Figure 15. Source-Drain Diode Forward Characteristics ($\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$)

Figure 17. Resistive Load Switching
Drain-Source Voltage Slope vs. Gate-Source Voltage ($\left.\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=0 \Omega\right)$

Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance $\left(V_{D D}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$

TYPICAL PERFORMANCE CURVES

Figure 20. R $_{\text {өJA }}$ vs. Copper Area

Figure 21. Transient Thermal Resistance

Figure 22. Resistive Load Switching Test Circuit

Figure 23. Resistive Load Switching Waveforms

NCV8401A, NCV8401B

TEST CIRCUITS AND WAVEFORMS

Figure 24. Inductive Load Switching Test Circuit

Figure 25. Inductive Load Switching Waveforms

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

SOLDERING FOOTPRINT*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```


[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

