Self-Protected Low Side Driver with Temperature and Current Limit
 NCV8402, NCV8402A

NCV8402/A is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

Features

- Short-Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- NCV8402AMNWT1G - Wettable Flanks Product
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

$\mathbf{V}_{\text {(BR)DSS }}$ (Clamped)	$\mathbf{R}_{\text {DS(ON) }}$ TYP	$\mathbf{I}_{\mathbf{D}}$ MAX
42 V	$165 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	$2.0 \mathrm{~A}^{*}$

*Max current limit value is dependent on input condition.

(Note: Microdot may be in either location)

DFN6 PACKAGE PIN DESCRIPTION

G NC NC	Pin \#	Symbol	Description
1 2 3	1	G	Gate Input
7	2	NC	No Connect
EPAD	3	NC	No Connect
$\begin{array}{lll}6 & 5 & 4\end{array}$	4	S*	Source
S S S	5	S*	Source
	6	S*	Source
	7	EPAD	Drain

*Pins 4, 5, 6 are internally shorted together. It is recommended to short these pins externally.

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	$V_{\text {DSS }}$	42	V
Drain-to-Gate Voltage Internally Clamped $\quad\left(\mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \Omega\right)$	$V_{\text {DGR }}$	42	V
Gate-to-Source Voltage	V_{GS}	± 14	V
Continuous Drain Current	ID	Internally Limited	
	P_{D}	$\begin{gathered} 1.1 \\ 1.74 \\ 8.9 \end{gathered}$	W
	$P_{\text {D }}$	$\begin{gathered} 0.76 \\ 1.78 \\ 8.9 \end{gathered}$	W
	$I_{\text {D }}$	$\begin{aligned} & 1.54 \\ & 1.94 \\ & 6.75 \end{aligned}$	A
	ID	$\begin{aligned} & 1.28 \\ & 1.97 \\ & 6.75 \end{aligned}$	A
Thermal Resistance SOT223 Junction-to-Ambient Steady State (Note 1) SOT223 Junction-to-Ambient Steady State (Note 2) SOT223 Junction-to-Soldering Point Steady State DFN Junction-to-Ambient Steady State (Note 1) DFN Junction-to-Ambient Steady State (Note 2) DFN Junction-to-Soldering Point Steady State	$\mathrm{R}_{\text {өJA }}$ $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {өJs }}$ $\mathrm{R}_{\text {өJA }}$ $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {өJs }}$	$\begin{gathered} \hline 114 \\ 72 \\ 14 \\ 163 \\ 70 \\ 14 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Single Pulse Drain-to-Source Avalanche Energy $\left(\mathrm{V}_{\mathrm{DD}}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{PK}}=1.0 \mathrm{~A}, \mathrm{~L}=300 \mathrm{mH}, \mathrm{R}_{\mathrm{G}(\mathrm{ext})}=25 \Omega\right)$	$\mathrm{E}_{\text {AS }}$	150	mJ
Load Dump Voltage ($\mathrm{V}_{\mathrm{GS}}=0$ and $\left.10 \mathrm{~V}, \mathrm{R}_{\mathrm{I}}=2.0 \Omega, \mathrm{R}_{\mathrm{L}}=9.0 \Omega, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}\right)$	$\mathrm{V}_{\text {LD }}$	55	V
Operating Junction Temperature	TJ	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted onto min pad FR4 PCB, ($2 \mathrm{oz} . \mathrm{Cu}, 0.06$ " thick).
2. Surface-mounted onto $2^{\prime \prime}$ sq. FR4 board ($1^{\prime \prime}$ sq., 1 oz . Cu, $0.06^{\prime \prime}$ thick).

Figure 1. Voltage and Current Convention

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	42	46	55	V
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$		40	45	55	
Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	IDSs		0.25	4.0	$\mu \mathrm{A}$
Zero Gate Voltage Drain Current	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$	IDSS		1.1	20	$\mu \mathrm{A}$
Gate Input Current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}$	$\mathrm{I}_{\text {GSSF }}$		50	100	$\mu \mathrm{A}$

ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	1.3	1.8	2.2	V
Gate Threshold Temperature Coefficient		$\mathrm{V}_{\mathrm{GS}(\text { (th })} \mathrm{T}_{\mathrm{J}}$		4.0		$-\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Static Drain-to-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		165	200	$\mathrm{m} \Omega$
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			305	400	
	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			195	230	
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			360	460	
	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$			190	230	
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			350	460	
Source-Drain Forward On Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A}$	$\mathrm{V}_{\text {SD }}$		1.0		V

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Time ($10 \% \mathrm{~V}_{\text {IN }}$ to $90 \% \mathrm{ld}$)	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=4.7 \Omega \end{gathered}$	$\mathrm{t}_{\text {on }}$	25	30	$\mu \mathrm{s}$
Turn-Off Time ($90 \% \mathrm{~V}_{\text {IN }}$ to $10 \% \mathrm{ID}$)		$\mathrm{t}_{\text {off }}$	120	200	$\mu \mathrm{s}$
Turn-On Rise Time ($10 \% \mathrm{I}_{\mathrm{D}}$ to $90 \% \mathrm{I}_{\mathrm{D}}$)		$\mathrm{t}_{\text {rise }}$	20	25	$\mu \mathrm{s}$
Turn-Off Fall Time ($90 \% \mathrm{ID}$ to $10 \% \mathrm{ID}$)		$\mathrm{t}_{\text {fall }}$	50	70	$\mu \mathrm{s}$
Slew-Rate ON (70% to $50 \% \mathrm{~V}_{\mathrm{DD}}$)		$-\mathrm{dV} \mathrm{V}_{\mathrm{DS}} / \mathrm{dt}_{\mathrm{ON}}$	0.8	1.2	V/us
Slew-Rate OFF (50% to $70 \% \mathrm{~V}_{\mathrm{DD}}$)		$\mathrm{dV}_{\text {DS }} / \mathrm{dt}_{\text {OFF }}$	0.3	0.5	V / us

SELF PROTECTION CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 4)

Current Limit	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	ILIM	3.7	4.3	5.0	A
	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$		2.3	3.0	3.7	
	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.2	4.8	5.4	
	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$		2.7	3.6	4.5	
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$ (Note 5)	TLIM(off)	150	175	200	${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$	$\Delta \mathrm{T}_{\text {LIM }}$ (on)		15		
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Note 5)	$\mathrm{T}_{\text {LIM(off) }}$	150	165	185	
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\Delta \mathrm{T}_{\text {LIM (on) }}$		15		

GATE INPUT CHARACTERISTICS (Note 5)

Device ON Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$	$\mathrm{I}_{\text {GON }}$	50	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \mathrm{D}_{\mathrm{D}}=1.0 \mathrm{~A}$		400	
Current Limit Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{I}_{\text {GCL }}$	0.05	mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		0.4	

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. Fault conditions are viewed as beyond the normal operating range of the part.
5. Not subject to production testing.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
GATE INPUT CHARACTERISTICS (Note 5)						
Thermal Limit Fault Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{I}_{\text {GTL }}$		0.15		mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$			0.7		

ESD ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 5)

Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000		
			Machine Model (MM)		

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. Fault conditions are viewed as beyond the normal operating range of the part.
5. Not subject to production testing.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NCV8402, NCV8402A

TYPICAL PERFORMANCE CURVES

Figure 2. Single Pulse Maximum Switch-off Current vs. Load Inductance

Figure 4. Single Pulse Maximum Inductive Switch-off Current vs. Time in Clamp

Figure 6. On-state Output Characteristics

Figure 3. Single Pulse Maximum Switching Energy vs. Load Inductance

Figure 5. Single Pulse Maximum Inductive Switching Energy vs. Time in Clamp

Figure 7. Transfer Characteristics

NCV8402, NCV8402A

TYPICAL PERFORMANCE CURVES

Figure 8. $\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$ vs. Gate-Source Voltage

Figure 10. Normalized $\mathbf{R D S}_{\text {(on) }}$ vs. Temperature

Figure 12. Current Limit vs. Junction Temperature

Figure 9. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ vs. Drain Current

Figure 11. Current Limit vs. Gate-Source Voltage

Figure 13. Drain-to-Source Leakage Current

NCV8402, NCV8402A

TYPICAL PERFORMANCE CURVES

Figure 14. Normalized Threshold Voltage vs. Temperature

Figure 16. Resistive Load Switching Time vs. Gate-Source Voltage

Figure 18. Resistive Load Switching Time vs. Gate Resistance

Figure 15. Source-Drain Diode Forward Characteristics

Figure 17. Resistive Load Switching Drain-Source Voltage Slope vs. Gate-Source Voltage

Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

Figure 20. Transient Thermal Resistance - SOT-223 Package

Figure 21. Transient Thermal Resistance - DFN Package

TEST CIRCUITS AND WAVEFORMS

Figure 22. Resistive Load Switching Test Circuit

Figure 23. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

Figure 24. Inductive Load Switching Test Circuit

Figure 25. Inductive Load Switching Waveforms

ORDERING INFORMATION

Device*	Package	Shipping ${ }^{\dagger}$
NCV8402STT1G	SOT-223 (Pb-Free)	$1000 /$ Tape \& Reel
NCV8402ASTT1G	SOT-223 (Pb-Free)	$4000 /$ Tape \& Reel
NCV8402STT3G	DFN6 (Pb-Free)	$2000 /$ Tape \& Reel
NCV8402ASTT3G	DFN6 NCV8402AMNT2G (Pb-Free, Wettable Flank)	$3000 /$ Tape \& Reel
NCV8402AMNWT1G		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SOT-223 (TO-261)
CASE 318E-04
ISSUE R
SCALE 1:1
DATE 02 OCT 2018

NDTES:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D \& E DD NDT INCLUDE MDLD FLASH, PRDTRUSIDNS DR GATE BURRS. MILD FLASH, PRDTRUSIDNS IR GATE BURRS SHALL NUT EXCEED 0.200MM PER SIDE.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE fram the seating plane ta the lowest point gf the package body.
6. POSITIDNAL TOLERANCE APPLIES TD DIMENSIDNS b AND bl.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
A	1.50	1.63	1.75
A1	0.02	0.06	0.10
b	0.60	0.75	0.89
b1	2.90	3.06	3.20
c	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
e	2.30 BSC		
L	0.20	---	---
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
$\boldsymbol{\theta}$	0°	---	10°

RECDMMENDED MDUNTING FOUTPRINT

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 1 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

| STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | PIN 1. SOURCE |
| :---: | :---: | :---: | :---: | :---: | STYLE 5: PIN 1. DRAIN

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
XXXXX	$=$ Specific Device Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 2 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

$2 x \quad 0|0.10| c$
TDP VIEW

${ }^{\circ}$ XXXXX
XXXXX
ALYW:

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking.

DFNW6 3x3, 0.95P
CASE 506DK
ISSUE A
DATE 07 MAY 2021

SECTIDN C-C

DIM	MILLIMETERS				
	MIN.	MAX.	MAX.		
A	0.75	0.85	0.95		
A1	0.00	---	0.05		
A3	0.20 REF				
A4	0.10	---	---		
b	0.35	0.40	0.45		
D	3.00 BSC				
D2	2.40	2.50			2.60
E	3.00 BSC				
E2	1.50	1.60	1.70		
e	0.95 BSC				
L	0.30	0.40	0.50		
L3	0.00	0.05	0.10		

* For additional information on our Pb-Free strategy and soldering details, please download the \square Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

| DOCUMENT NUMBER: | 98AON12549G | Electronic versions are uncontrolled except when accessed directy from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFNW6 3X3, 0.95P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

