NCV8405A, NCV8405B

Self-Protected Low Side Driver with Temperature and Current Limit

NCV8405A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device is suitable for harsh automotive environments.

Features

- Short-Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

A = Assembly Location
Y = Year
W, WW = Work Week xxxxx = 8405A or 8405B
G or $\cdot=\mathrm{Pb}$-Free Package
(Note: Microdot may be in either location)

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

Rating	Symbol	Value	Unit
Drain－to－Source Voltage Internally Clamped	$\mathrm{V}_{\text {DSS }}$	42	V
Drain－to－Gate Voltage Internally Clamped $\quad\left(\mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \Omega\right)$	$V_{\text {DGR }}$	42	V
Gate－to－Source Voltage	V_{GS}	± 14	V
Continuous Drain Current	ID	Internally Limited	
Power Dissipation－SOT－223 Version ＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 1） ＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 2） ＠ $\mathrm{T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$ Power Dissipation－DPAK Version ＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 1） $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 2） ＠ $\mathrm{T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 1.0 \\ 1.7 \\ 11.4 \\ 2.0 \\ 2.5 \\ 40 \end{gathered}$	W
Thermal Resistance－SOT－223 Version Junction－to－Ambient Steady State（Note 1） Junction－to－Ambient Steady State（Note 2） Junction－to－Soldering Point Steady State Thermal Resistance－DPAK Version Junction－to－Ambient Steady State（Note 1） Junction－to－Ambient Steady State（Note 2） Junction－to－Soldering Point Steady State	$\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {日Js }}$ $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {日JA }}$ $\mathrm{R}_{\text {өJs }}$	$\begin{aligned} & 130 \\ & 72 \\ & 11 \\ & 60 \\ & 50 \\ & 3.0 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Single Pulse Drain－to－Source Avalanche Energy $\left(\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{PK}}=2.8 \mathrm{~A}, \mathrm{~L}=80 \mathrm{mH}, \mathrm{R}_{\mathrm{G}(\text { ext })}=25 \Omega, \mathrm{TJ}=25^{\circ} \mathrm{C}\right)$	$\mathrm{E}_{\text {AS }}$	275	mJ
Load Dump Voltage $\quad \mathrm{V}_{\mathrm{LD}}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{GS}}=0\right.$ and $\left.10 \mathrm{~V}, \mathrm{R}_{\mathrm{I}}=2.0 \Omega, \mathrm{R}_{\mathrm{L}}=6.0 \Omega, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}\right)$	V_{LD}	53	V
Operating Junction Temperature	T_{J}	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．
1．Surface－mounted onto min pad FR4 PCB，（ $2 \mathrm{oz} . \mathrm{Cu}, 0.06^{\prime \prime}$ thick）．
2．Surface－mounted onto $2^{\prime \prime}$ sq．FR4 board（ $1^{\prime \prime}$ sq．， 1 oz ．Cu， $0.06^{\prime \prime}$ thick）．

Figure 1．Voltage and Current Convention

NCV8405A, NCV8405B

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	42	46	51	V
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ (\text { Note } 5) \end{gathered}$		42	45	51	
Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	IDSS		0.5	2.0	$\mu \mathrm{A}$
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ (\text { Note } 5) \end{gathered}$			2.0	10	
Gate Input Current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}$	$\mathrm{I}_{\text {GSSF }}$		50	100	$\mu \mathrm{A}$

ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}}($ th)	1.0	1.6	2.0	V
Gate Threshold Temperature Coefficient		$\mathrm{V}_{\mathrm{GS}(\text { th })} / \mathrm{T}_{\mathrm{J}}$		4.0		$-\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Static Drain-to-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.4 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		90	100	$\mathrm{m} \Omega$
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			165	190	
	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			105	120	
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=1.4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			185	210	
	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			105	120	
	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$			185	210	
Source-Drain Forward On Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A}$	$\mathrm{V}_{\text {SD }}$		1.05		V

SWITCHING CHARACTERISTICS (Note 5)

Turn-ON Time ($10 \% \mathrm{~V}_{\text {IN }}$ to $90 \% \mathrm{I}_{\mathrm{D}}$)	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=4.7 \Omega \end{gathered}$	ton	20	$\mu \mathrm{s}$
Turn-OFF Time ($90 \% \mathrm{~V}_{\text {IN }}$ to $10 \% \mathrm{ID}$)		$\mathrm{t}_{\text {OFF }}$	110	
Slew-Rate ON ($70 \% \mathrm{~V}_{\mathrm{DS}}$ to 50\% V_{DS})	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=4.7 \Omega \end{gathered}$	-dV $\mathrm{DS}^{\text {/ }}$ dton	1.0	V/us
Slew-Rate OFF ($50 \% \mathrm{~V}_{\mathrm{DS}}$ to $70 \% \mathrm{~V}_{\text {DS }}$)		$\mathrm{d} \mathrm{V}_{\text {DS }} / \mathrm{dt}_{\text {OFF }}$	0.4	

SELF PROTECTION CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 4)

Current Limit	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	ILIM	6.0	9.0	11	A
	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \text { (Note 5) } \end{gathered}$		3.0	5.0	8.0	
	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		7.0	10.5	13	
	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ (\text { Note 5) } \end{gathered}$		4.0	7.5	10	
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$ (Note 5)	TLIM(off)	150	180	200	${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V}$	$\Delta \mathrm{T}_{\text {LIM }}$ (on)		15		
Temperature Limit (Turn-off)	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Note 5)	$\mathrm{T}_{\text {LIM }}$ (off)	150	165	185	
Thermal Hysteresis	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\Delta \mathrm{T}_{\text {LIM(on) }}$		15		

GATE INPUT CHARACTERISTICS (Note 5)

Device ON Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$	$\mathrm{I}_{\text {GON }}$	50	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \mathrm{D}_{\mathrm{D}}=1.0 \mathrm{~A}$		400	
Current Limit Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GCL}}$	0.05	mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		0.4	
Thermal Limit Fault Gate Input Current	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$	$I_{\text {GTL }}$	0.22	mA
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		1.0	

ESD ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 5)

3. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2 \%$.
4. Fault conditions are viewed as beyond the normal operating range of the part.
5. Not subject to production testing.

NCV8405A, NCV8405B

TYPICAL PERFORMANCE CURVES

Figure 2. Single Pulse Maximum Switch-off Current vs. Load Inductance

Figure 4. Single Pulse Maximum Inductive Switch-off Current vs. Time in Clamp

Figure 6. Output Characteristics

Figure 3. Single Pulse Maximum Switching Energy vs. Load Inductance

Figure 5. Single Pulse Maximum Inductive Switching Energy vs. Time in Clamp

Figure 7. Transfer Characteristics

TYPICAL PERFORMANCE CURVES

Figure 8. R $_{\text {DS(on) }}$ vs. Gate-Source Voltage

Figure 10. Normalized $\mathbf{R}_{\text {DS(on) }}$ vs. Temperature

Figure 9. R DS(on) $^{\text {vs. Drain Current }}$

Figure 11. Current Limit vs. Gate-Source Voltage

Figure 12. Current Limit vs. Junction Temperature

Figure 13. Drain-to-Source Leakage Current

NCV8405A, NCV8405B

TYPICAL PERFORMANCE CURVES

Figure 14. Normalized Threshold Voltage vs. Temperature

Figure 16. Resistive Load Switching Time vs. Gate-Source Voltage

Figure 18. Resistive Load Switching Time vs. Gate Resistance

Figure 15. Body-Diode Forward Characteristics

Figure 17. Resistive Load Switching Drain-Source Voltage Slope vs. Gate-Source Voltage

Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

NCV8405A, NCV8405B

TYPICAL PERFORMANCE CURVES

Figure 20. Transient Thermal Resistance

Figure 21. $\boldsymbol{\theta} \mathrm{JA}$ vs. Copper

NCV8405A, NCV8405B

TEST CIRCUITS AND WAVEFORMS

Figure 22. Resistive Load Switching Test Circuit

Figure 23. Resistive Load Switching Waveforms

NCV8405A, NCV8405B

TEST CIRCUITS AND WAVEFORMS

Figure 24. Inductive Load Switching Test Circuit

Figure 25. Inductive Load Switching Waveforms

NCV8405A, NCV8405B

ORDERING INFORMATION

Device	Package	Shipping †
NCV8405ASTT1G	SOT-223 (Pb-Free)	$1000 /$ Tape \& Reel
NCV8405ASTT3G	SOT-223 (Pb-Free)	$4000 /$ Tape \& Reel
NCV8405ADTRKG	DPAK (Pb-Free)	$2500 /$ Tape \& Reel
NCV8405BDTRKG	DPAK (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

SOLDERING FOOTPRINT*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

