Protected Power MOSFET

2.6 A, 52 V, N-Channel, Logic Level, Clamped MOSFET w/ ESD Protection

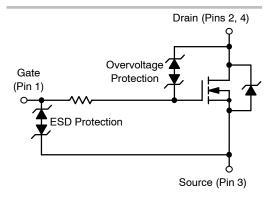
Features

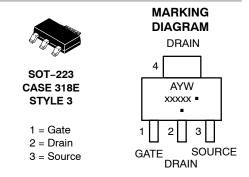
- Diode Clamp Between Gate and Source
- ESD Protection Human Body Model 5000 V
- Active Over-Voltage Gate to Drain Clamp
- Scalable to Lower or Higher R_{DS(on)}
- Internal Series Gate Resistance
- These are Pb-Free Devices

Benefits

- High Energy Capability for Inductive Loads
- Low Switching Noise Generation

Applications


- Automotive and Industrial Markets: Solenoid Drivers, Lamp Drivers, Small Motor Drivers
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable



ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
52 V	95 mΩ @ 10 V	2.6 A

= Assembly Location

= Year

W = Work Week xxxxx = V8440 or 8440A = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

1

$\textbf{MAXIMUM RATINGS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V_{DSS}	52–59	V
Gate-to-Source Voltage - Continuous	V _{GS}	±15	V
Drain Current – Continuous @ T_A = 25°C – Single Pulse (t_p = 10 μ s) (Note 1)	I _D	2.6 10	Α
Total Power Dissipation @ T _A = 25°C (Note 1)	P_{D}	1.69	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain-to–Source Avalanche Energy (V _{DD} = 50 V, I _{D(pk)} = 1.17 A, V _{GS} = 10 V, L = 160 mH, R _G = 25 Ω)	E _{AS}	110	mJ
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = $2.0~\Omega$, R _L = $9.0~\Omega$, td = $400~ms$)	V_{LD}	60	V
Thermal Resistance, Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$egin{array}{c} R_{ hetaJA} \ R_{ hetaJA} \end{array}$	74 169	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted to a FR4 board using 1" pad size, (Cu area 1.127 in²).

2. When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in²).

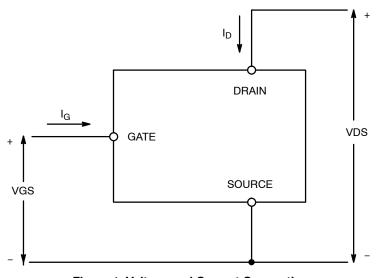


Figure 1. Voltage and Current Convention

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}, T_J = 25^{\circ}\text{C}$) ($V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}, T_J = -40^{\circ}\text{C}$ to 125°C) (Note 4) Temperature Coefficient (Negative)		V _{(BR)DSS}	52 50.8	55 54 –9.3	59 59.5	V V mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V})$ $(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C})$ (Note 4)		I _{DSS}			10 25	μΑ
Gate-Body Leakage Current $(V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V})$ $(V_{GS} = \pm 14 \text{ V}, V_{DS} = 0 \text{ V})$		I _{GSS}		±35	±10	μΑ
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \mu A)$ Threshold Temperature Coefficient (Neg	ative)	V _{GS(th)}	1.1	1.5 -4.1	1.9	V mV/°C
Static Drain-to-Source On-Resistance (Note 3)		R _{DS(on)}		150 135 95	180 160 110	mΩ
Forward Transconductance (Note 3) (V _{DS} = 15 V, I _D = 2.6 A)		g _{FS}		3.8		Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}		155		pF
Output Capacitance	$V_{DS} = 35 \text{ V}, V_{GS} = 0 \text{ V},$ f = 10 kHz	C _{oss}		60		
Transfer Capacitance		C _{rss}		25		
Input Capacitance		C _{iss}		170		pF
Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 10 kHz	C _{oss}		70		
Transfer Capacitance		C _{rss}		30		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Not subject to production testing.5. Switching characteristics are independent of operating junction temperatures.

MOSFET ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Charac	cteristic	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	ote 5)					
Turn-On Delay Time	V_{GS} = 4.5 V, V_{DD} = 40 V, I_{D} = 2.6 A, R_{D} = 15.4 Ω	t _{d(on)}		375		ns
Rise Time		t _r		1525		
Turn-Off Delay Time		t _{d(off)}		1530		
Fall Time		t _f		1160		
Turn-On Delay Time		t _{d(on)}		325		ns
Rise Time	V _{GS} = 4.5 V, V _{DD} = 40 V,	t _r		1275		
Turn-Off Delay Time	$I_D = 1.0 \text{ A}, R_D = 40 \Omega$	t _{d(off)}		1860		
Fall Time	7	t _f		1150		
Turn-On Delay Time		t _{d(on)}		190		ns
Rise Time	V _{GS} = 10 V, V _{DD} = 15 V,	t _r		710		
Turn-Off Delay Time	$I_D = 2.6 \text{ A}, R_D = 5.8 \Omega$	t _{d(off)}		2220		
Fall Time	7	t _f		1180		1
Gate Charge	V_{GS} = 4.5 V, V_{DS} = 40 V, I_{D} = 2.6 A (Note 3)	Q _T		4.5		nC
		Q ₁		0.9		
		Q_2		2.6		
Gate Charge	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 1.5 \text{ A (Note 3)}$	Q _T		3.9		nC
		Q ₁		1.0		
		Q ₂		1.7		
SOURCE-DRAIN DIODE CHARACTE	RISTICS		•			
Forward On-Voltage	I_S = 2.6 A, V_{GS} = 0 V (Note 3) I_S = 2.6 A, V_{GS} = 0 V, T_J = 125°C	V _{SD}		0.81 0.66	1.5	V
Reverse Recovery Time	I_{S} = 1.5 A, V_{GS} = 0 V, dI_{S}/dt = 100 A/ μ s (Note 3)	t _{rr}		730		ns
		t _a		200		
		t _b		530		
Reverse Recovery Stored Charge	•	Q _{RR}		6.3		μC
ESD CHARACTERISTICS (Note 4)		•				
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	5000			V
Ç , ,		4	$\overline{}$			ł

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Not subject to production testing.
- 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

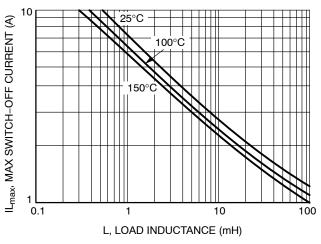


Figure 1. Single Pulse Maximum Switch-off Current vs. Load Inductance

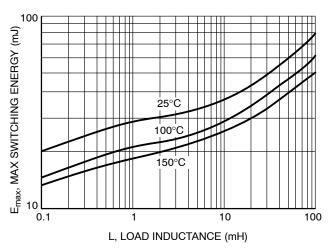
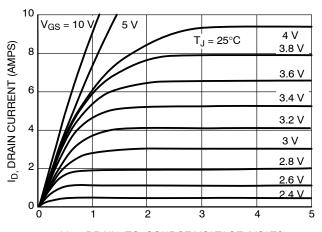
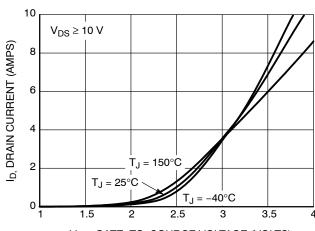




Figure 2. Single Pulse Maximum Switching Energy vs. Load Inductance

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

 V_{GS} , GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 4. Transfer Characteristics

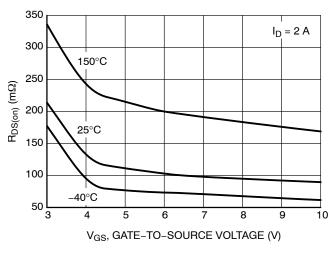


Figure 5. R_{DS(on)} vs. Gate-Source Voltage

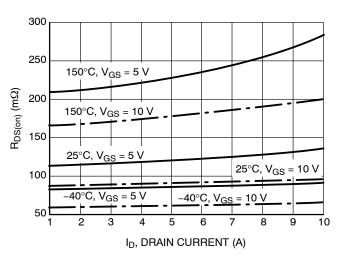


Figure 6. R_{DS(on)} vs. Drain Current

TYPICAL PERFORMANCE CURVES

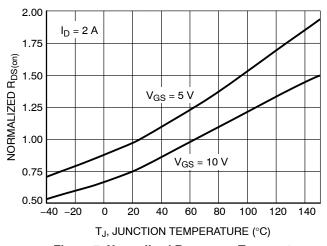


Figure 7. Normalized R_{DS(on)} vs. Temperature

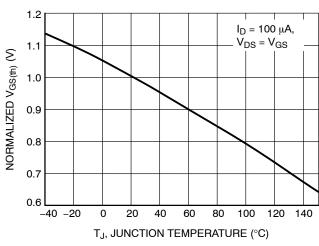


Figure 8. Normalized Threshold Voltage vs.
Temperature

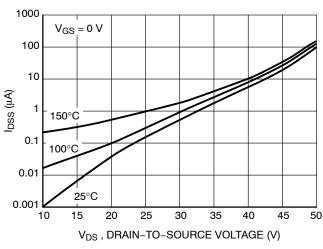


Figure 9. Drain-to-Source Leakage Current

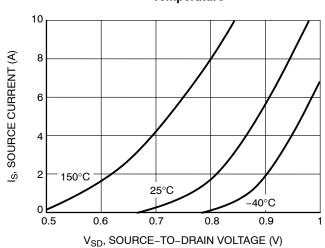
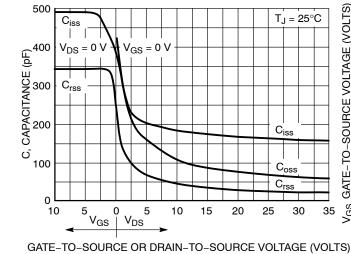



Figure 10. Source-Drain Diode Forward Characteristics

Et a se 44. Our estimate Martinia

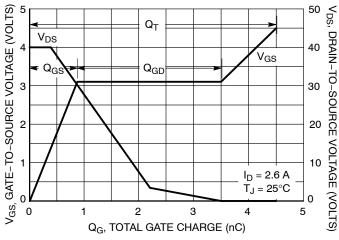


Figure 12. Gate-to-Source Voltage vs. Total Gate Charge

Figure 11. Capacitance Variation

TYPICAL PERFORMANCE CURVES

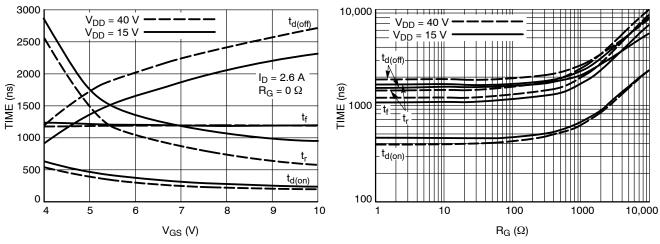


Figure 13. Resistive Load Switching Time vs.
Gate-Source Voltage

Figure 14. Resistive Load Switching Time vs. Gate Resistance ($V_{GS} = 5 \text{ V}, I_D = 2.6 \text{ A}$)

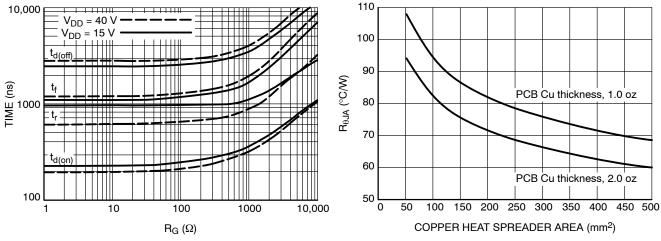


Figure 15. Resistive Load Switching Time vs. Gate Resistance ($V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}$)

Figure 16. R_{0JA} vs. Copper Area

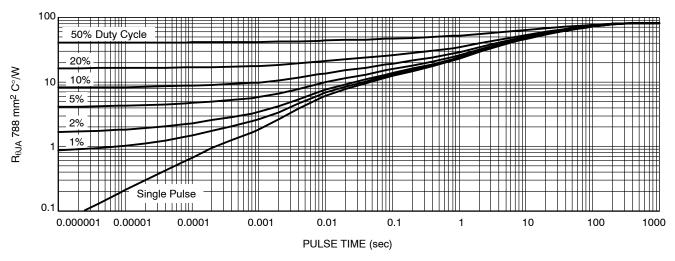


Figure 17. Transient Thermal Resistance

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8440STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8440ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8440STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8440ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B