NCV8450, NCV8450A

Self-Protected High Side Driver with Temperature and Current Limit

The NCV8450/A is a fully protected High-Side Smart Discrete device with a typical $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ of 1.0Ω and an internal current limit of 0.8 A typical. The device can switch a wide variety of resistive, inductive, and capacitive loads.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- Loss of Ground Protection
- ESD Protection
- Slew Rate Control for Low EMI
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Automotive
- Industrial

PRODUCT SUMMARY

Symbol	Characteristics	Value	Unit
$\mathrm{V}_{\text {IN_CL }}$	Overvoltage Protection	54	V
$\mathrm{~V}_{\mathrm{D} \text { (on) }}$	Operation Voltage	$4.5-45$	V
$\mathrm{R}_{\text {on }}$	On-State Resistance	1.0	Ω

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

NCV8450, NCV8450A

Figure 1. Block Diagram

PACKAGE PIN DESCRIPTION

Pin \#	Symbol	Description
1	IN	Control Input, Active Low
2	$\mathrm{~V}_{\mathrm{D}}$	Supply Voltage
3	OUT	Output
4	$\mathrm{~V}_{\mathrm{D}}$	Supply Voltage

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
		Min	Max	
DC Supply Voltage (Note 1)	V_{D}	-16	45	V
Load Dump Protection $\left(\mathrm{RI}=2 \Omega, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}, \mathrm{~V}_{\mathrm{IN}}=0,10 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{bb}}=13.5 \mathrm{~V}\right)$	$\mathrm{V}_{\text {Loaddump }}$		85	V
Input Current	$\mathrm{l}_{\text {in }}$	-15	15	mA
Output Current (Note 1)	$\mathrm{I}_{\text {out }}$		Internally Limited	A
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	P_{D}			W
Electrostatic Discharge (Note 4) (Human Body Model (HBM) $100 \mathrm{pF} / 1500 \Omega$) Input All other			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	kV
Single Pulse Inductive Load Switching Energy (Note 4) $\left(V_{D D}=13.5 \mathrm{~V}, \mathrm{I}=465 \mathrm{mApk}, \mathrm{~L}=200 \mathrm{mH}, \mathrm{~T}_{\mathrm{JStart}}=150^{\circ} \mathrm{C}\right)$	$\mathrm{E}_{\text {AS }}$		29	mJ
Operating Junction Temperature	T_{J}	-40	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {storage }}$	-55	+150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.
2. Minimum Pad.
3. 1 in square pad size, $\mathrm{FR}-4,1 \mathrm{oz} \mathrm{Cu}$.
4. Not subjected to production testing.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max Value	Unit
Thermal Resistance (Note 5)			K/W
Junction-to-Ambient (Note 2)	$R_{\theta J A}$	110	
Junction-to-Ambient (Note 3)	$R_{\theta J A}$	78.3	

5. Not subjected to production testing.

Figure 2. Applications Test Circuit

ELECTRICAL CHARACTERISTICS $\left(6 \leq \mathrm{V}_{\mathrm{D}} \leq 45 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{j}<150^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Rating | | | Value | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Symbol | Min | Typ | Max | Unit |

OUTPUT CHARACTERISTICS

Operating Supply Voltage	$\mathrm{V}_{\text {SUPPLY }}$		4.5	-	45	V
On Resistance	R_{ON}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{OUT}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=7 \mathrm{~V}-45 \mathrm{~V}$		1.0	2	Ω
(Pin 1 Connected to GND)		$\mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{OUT}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=7 \mathrm{~V}-45 \mathrm{~V}$		1.4	3	
		$\mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{OUT}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V}$		1.1	2.1	
Standby Current (Pin 1 Open)	I_{D}	$\mathrm{V}_{\mathrm{D}} \leq 20 \mathrm{~V}$		0.6	10	$\mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{D}}>20 \mathrm{~V}$				

INPUT CHARACTERISTICS

Input Current - Off State	$\mathrm{I}_{\mathrm{IN} \text { _OFF }}$	$\mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{OUT}} \leq 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}(\mathrm{Note} 6)$	-50 -40		
Input Current - On State (Pin 1 Grounded)	$\mathrm{I}_{\mathrm{IN} _ \text {ON }}$			1.5	3
Input Resistance (Note 6)	R_{IN}		mA		

SWITCHING CHARACTERISTICS

Turn-On Time (Note 7) ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{D}}$ to 0 V) to $90 \% \mathrm{~V}_{\text {OUT }}$	t_{ON}	$\begin{gathered} R_{L}=270 \Omega \text { (Note 6) } \\ V_{D}=13.5 \mathrm{~V}, R_{L}=270 \Omega, T_{J}=25^{\circ} \mathrm{C} \end{gathered}$	30	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	$\mu \mathrm{s}$
Turn-Off Time (Note 7) ($\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{D}) to $10 \% \mathrm{~V}_{\text {OUT }}$	$\mathrm{t}_{\text {OFF }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=270 \Omega(\text { Note } 6) \\ \mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, R_{\mathrm{L}}=270 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{gathered}$	60	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	us
Slew Rate On (Note 7) $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{D}}\right.$ to OV) 10% to 30% $V_{\text {OUT }}$	$\mathrm{dV} / \mathrm{dt}_{\text {ON }}$	$\begin{gathered} R_{L}=270 \Omega(\text { Note 6) } \\ V_{D}=13.5 \mathrm{~V}, R_{L}=270 \Omega, T_{J}=25^{\circ} \mathrm{C} \end{gathered}$	0.7	4 4	V/us
Slew Rate Off (Note 7) ($\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{D}) 70% to 40% $V_{\text {OUT }}$	dV/dtofF	$\begin{gathered} R_{L}=270 \Omega(\text { Note 6) } \\ V_{D}=13.5 \mathrm{~V}, R_{L}=270 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{gathered}$	0.9	4 4	V/us

OUTPUT DIODE CHARACTERISTICS (Note 6)

Drain-Source Diode Voltage	V_{F}	$\mathrm{I}_{\text {OUT }}=-0.2 \mathrm{~A}$		0.6		V
Continuous Reverse Drain Current	I_{S}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			0.2	A

PROTECTION FUNCTIONS (Note 8)

Temperature Shutdown (Note 6)	$\mathrm{T}_{\text {SD }}$		150	175	-	${ }^{\circ} \mathrm{C}$
Temperature Shutdown Hysteresis (Note 6)	$\mathrm{T}_{\text {SD_HYST }}$			5		${ }^{\circ} \mathrm{C}$
Output Current Limit	ILIM	$\begin{gathered} \mathrm{T}_{J}=-40^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{t}_{\mathrm{m}}=100 \mu \mathrm{~s}(\text { Note } 6) \\ \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{t}_{\mathrm{m}}=100 \mu \mathrm{~s} \\ \mathrm{~T}_{J}=150^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{t}_{\mathrm{m}}=100 \mu \mathrm{~s} \text { (Note 6) } \end{gathered}$	0.5	0.8	1.5	A
Output Clamp Voltage (Inductive Load Switch Off) At $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\text {CLAMP }}$	$\mathrm{V}_{\text {cLAMP }}$	IOUT $=4 \mathrm{~mA}$	45	52		V
Overvoltage Protection	$\mathrm{V}_{\text {IN_CL }}$	$I_{\text {CLAMP }}=4 \mathrm{~mA}$	50	54		V

6. Not subjected to production testing
7. Only valid with high input slew rates
8. Protection functions are not designed for continuous repetitive operation and are considered outside normal operating range

NCV8450, NCV8450A

TYPICAL CHARACTERISTIC CURVES

Figure 3. $\mathbf{R}_{\mathrm{DS}(o n)}$ vs. Temperature

Figure 5. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})} \mathrm{vs} . \mathrm{V}_{\mathrm{D}}$

Figure 7. Turn Off Time vs. Temperature

Figure 4. $\mathbf{R}_{\mathrm{DS}(o n)}$ vs. Output Load

Figure 6. Turn On Time vs. Temperature

Figure 8. Slew Rate (ON) vs. Temperature

NCV8450, NCV8450A

TYPICAL CHARACTERISTIC CURVES

Figure 9. Slew Rate (OFF) vs. Temperature

Figure 11. Peak Short Circuit Current vs. \mathbf{V}_{D} Voltage

Figure 13. V_{D} Leakage Current vs. V_{D} Voltage Off-State

Figure 10. Current Limit vs. Temperature

Figure 12. V_{D} Leakage Current vs. Temperature Off-State

Figure 14. On-State Input Current vs. Temperature

NCV8450, NCV8450A

TYPICAL CHARACTERISTIC CURVES

Figure 18. Input Current vs. V_{D} Voltage Off-State

Figure 16. Input Current vs. V_{D} Voltage On-State

Figure 15. Output Voltage vs. \mathbf{V}_{D} Voltage

Figure 17. Single Pulse Maximum Switch-off Current vs. Load Inductance

Figure 19. Initial Short-Circuit Shutdown Time vs. Temperature

Figure 20. R $_{\text {өJA }}$ vs. Copper Area

Figure 21. Transient Thermal Response

ISO PULSE TEST RESULTS

Test Pulse	Test Level	Test Results	Pulse Cycle Time and Generator Impedance
1	200 V	C	$500 \mathrm{~ms}, 10 \Omega$
2	150 V	C	$500 \mathrm{~ms}, 10 \Omega$
3 a	200 V	C	$100 \mathrm{~ms}, 50 \Omega$
3 b	200 V	C	$100 \mathrm{~ms}, 50 \Omega$
5	175 V	$\mathrm{E}(100 \mathrm{~V})$	$400 \mathrm{~ms}, 2 \Omega$

ORDERING INFORMATION

Device	Package	Shipping †
NCV8450STT3G	SOT-223 (Pb-Free)	$4000 /$ Tape \& Reel
NCV8450ASTT3G	SOT-223 (Pb-Free)	$4000 /$ Tape \& Reel

[^0] Specifications Brochure, BRD8011/D.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

