Self Protected High Side Driver with Temperature Shutdown and Current Limit NCV8460A

The NCV8460A is a fully protected High-Side driver that can be used to switch a wide variety of loads, such as bulbs, solenoids and other acuators. The device is internally protected from an overload condition by an active current limit and thermal shutdown.

A diagnostic output reports ON and OFF state open load conditions as well as thermal shutdown.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- CMOS compatible control input
- Open Load Detection in On and Off State
- Diagnostic Output
- Undervoltage and Overvoltage Shutdown
- Loss of Ground Protection
- ESD protection
- Slew Rate Control for Low EMI Switching
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

PRODUCT SUMMARY

Parameter	Symbol	Value	Units
Operating Voltage Range	V_{S}	6 to 36	V
$\mathrm{R}_{\mathrm{DSon}(\max)} \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	R_{ON}	60	$\mathrm{~m} \Omega$
Output Current Limit (min)	$\mathrm{I}_{\mathrm{lim}}$	6	A

$8 \underset{\substack{\text { ge } \\ 1}}{\text { ce }}$		
	$\begin{gathered} \text { SO-8 } \\ \text { D SUFFIX } \\ \text { CASE } 751 \end{gathered}$	
V8460A = Specific Device Code		
A	= Assembly L	
L	= Wafer Lot	
Y	= Year	
W	= Work Week	
	$=\mathrm{Pb}-$ Free Pa	

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping †
NCV8460ADR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Block Diagram

PIN DESCRIPTION

Pin \#	Symbol	
1	GND	Ground
2	IN	Logic Level Input
3	STAT	Status Output
4	N/C	No Connection
5	$\mathrm{~V}_{\mathrm{D}}$	Supply Voltage
6	OUT	Output
7	OUT	Output
8	$\mathrm{~V}_{\mathrm{D}}$	Supply Voltage

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
		Min	Max	
DC Supply Voltage	V_{D}	-0.3	41	V
Peak Transient Input Voltage (Load Dump 42.5 V, $\mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=6.5 \Omega$, ISO7637-2 pulse 5)	$\mathrm{V}_{\text {peak }}$		56	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-8	8	V
Input Current	$\mathrm{l}_{\text {in }}$	-5	5	mA
Output Current (Note 1)	$\mathrm{l}_{\text {out }}$	-6	Internally Limited	A
Negative Ground Current	$-_{\text {l }}^{\text {gnd }}$	-200	-	mA
Status Current	$\mathrm{I}_{\text {status }}$	-5	5	mA
Power Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	1.183		W
Electrostatic Discharge (HBM Model $100 \mathrm{pF} / 1500 \Omega$) Input Status Output V_{D}		$\begin{gathered} 4 \\ 3.5 \\ 5 \\ 5 \end{gathered}$		DC kV kV kV kV
Single Pulse Inductive Load Switching Energy (Note 2) $\left(\mathrm{L}=1.8 \mathrm{mH}, \mathrm{V}_{\text {bat }}=13.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=9 \mathrm{~A}, \mathrm{~T}_{\text {Jstart }}=150^{\circ} \mathrm{C}\right)$	$\mathrm{E}_{\text {AS }}$	100		mJ
Operating Junction Temperature	T_{J}	-40	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {storage }}$	-55	+150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.
2. Not subjected to production testing.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max Value	Unit
Thermal Resistance			
Junction-to-Lead	$R_{\theta J L}$	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient (min. Pad)	R $_{\text {日JJ }}$	110.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient (1" square pad size, FR-4, 1 oz Cu$)$	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

ELECTRICAL CHARACTERISTICS $\left(8 \leq \mathrm{V}_{\mathrm{D}} \leq 36 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Rating	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Operating Supply Voltage	V_{D}		6	-	36	V
Undervoltage Shutdown	V_{UV}		3	5	6	V
Undervoltage	V UV_Rst				6.5	V
Overvoltage Shutdown	$\mathrm{V}_{\text {OV }}$		36			V
On Resistance	R_{ON}	$\begin{aligned} \mathrm{I}_{\text {out }}= & 2 \mathrm{~A} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{D}>8 \mathrm{~V} \\ & \mathrm{I}_{\text {out }}=2 \mathrm{~A}, \mathrm{~V}_{D}>8 \mathrm{~V} \end{aligned}$			$\begin{gathered} \hline 60 \\ 120 \end{gathered}$	$\mathrm{m} \Omega$
Standby Current	I_{D}	$\begin{gathered} \text { Off State, } \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V} \\ \text { On State; } \mathrm{V}_{\text {in }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~A} \end{gathered}$		$\begin{aligned} & 10 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Output Leakage Current	IL	$\begin{gathered} \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\text {in }}=\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=13.5 \mathrm{~V} \end{gathered}$	-20		50 10 3	$\mu \mathrm{A}$

INPUT CHARACTERISTICS

Input Voltage - Low	$\mathrm{V}_{\text {in_low }}$				1.25	V
Input Current - Low	$\mathrm{I}_{\text {in_low }}$	$\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}$	1			$\mu \mathrm{~A}$
Input Voltage - High	$\mathrm{V}_{\text {in_high }}$		3.25			V
Input Current - High	$\mathrm{I}_{\text {in_high }}$	$\mathrm{V}_{\text {in }}=3.25 \mathrm{~V}$			10	$\mu \mathrm{~A}$
Input Hysteresis Voltage	$\mathrm{V}_{\text {hyst }}$		0.25			V
Input Clamp Voltage	$\mathrm{V}_{\text {in_cl }}$	$\mathrm{I}_{\text {in }}=1 \mathrm{~mA}$ $\mathrm{l}_{\text {in }}=-1 \mathrm{~mA}$	11 -13	12	-12	13
-11	V					

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} _ \text {on }}$	to $10 \% \mathrm{~V}_{\text {out }}, \mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6.5 \Omega$		40	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { _off }}$	to $90 \% \mathrm{~V}_{\text {out }}, \mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6.5 \Omega$		30	
Slew Rate On	$\mathrm{dV}_{\text {out }} / \mathrm{dt}_{\text {on }}$	10% to $80 \% \mathrm{~V}_{\text {out }}, \mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6.5 \Omega$		$\mu \mathrm{~s}$	
Slew Rate Off	$\mathrm{dV}_{\text {out }} / \mathrm{dt}_{\text {off }}$	90% to $10 \% \mathrm{~V}_{\text {out }}, \mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6.5 \Omega$		0.9	

OUTPUT DIODE CHARACTERISTICS (Note 3)

Forward Voltage	V_{F}	$\mathrm{I}_{\text {out }}=-1.3 \mathrm{~A}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$			0.6	V

STATUS PIN CHARACTERISTICS

Status Output Voltage Low	$\mathrm{V}_{\text {stat_low }}$	$\mathrm{I}_{\text {stat }}=1.6 \mathrm{~mA}$		0.2	0.5	V
Status Leakage Current	$\mathrm{I}_{\text {stat_leakage }}$	$\mathrm{V}_{\text {stat }}=5 \mathrm{~V}$		1	10	$\mu \mathrm{~A}$
Status Pin Input Capacitance	$\mathrm{C}_{\text {stat }}$	$\mathrm{V}_{\text {stat }}=5 \mathrm{~V}($ Note 3)			100	pF
Status Clamp Voltage	$\mathrm{V}_{\text {stat_cl }}$	$\mathrm{I}_{\text {stat }}=1 \mathrm{~mA}$ $\mathrm{I}_{\text {stat }}=-1 \mathrm{~mA}$	10 -2.2	11 -1.2	12 -0.6	V

PROTECTION FUNCTIONS (Note 4)

Temperature Shutdown (Note 3)	T_{SD}		150	175	200	${ }^{\circ} \mathrm{C}$
Temperature Shutdown Hysteresis (Note 3)	$\mathrm{T}_{\text {SD_hyst }}$		7	15		${ }^{\circ} \mathrm{C}$
Output Current Limit	$\mathrm{I}_{\text {lim }}$		$8 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}<36 \mathrm{~V}$	6	9	15
		$6 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}<36 \mathrm{~V}$	A			
Status Delay in Overload	$\mathrm{t}_{\mathrm{d} \text { _stat }}$				15	A
Switch Off Output Clamp Voltage	$\mathrm{V}_{\text {clamp }}$	$\mathrm{I}_{\text {out }}=2 \mathrm{~A}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~L}=6 \mathrm{mH}$	$\mathrm{V}_{\mathrm{D}}-$ 41	$\mathrm{V}_{\mathrm{D}}-$ 45	$\mathrm{V}_{\mathrm{D}}-$ 55	V

3. Not subjected to production testing
4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.

ELECTRICAL CHARACTERISTICS $\left(8 \leq \mathrm{V}_{\mathrm{D}} \leq 36 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Rating			Value			
	Symbol	Conditions	Min	Typ	Max	Unit

DIAGNOSTICS CHARACTERISTICS

Openload On State Detection Threshold	IOL_{2}	$\mathrm{~V}_{\text {in }}=5 \mathrm{~V}$	30		500	mA
Openload On State Detection Delay	$\mathrm{t}_{\text {d_OL_on }}$	$\mathrm{I}_{\text {out }}=0 \mathrm{~A}$			220	$\mu \mathrm{~s}$
Openload Off State Detection Threshold	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	1.5	-	3.5	V
Openload Detection Delay at Turn Off	$\mathrm{t}_{\text {d_OL_off }}$				1000	$\mu \mathrm{~s}$

3. Not subjected to production testing
4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 2. Open Load Status Timing (with external pull-up)

Figure 4. Switching Timing Diagram

NCV8460A

STATUS PIN TRUTH TABLE

Conditions	Input	Output	Status
Normal Operation	L	L	H
Undervoltage	H	L	X
	L	L	X
Overvoltage	L	L	H
	H	L	H
Current Limitation	L	X	H
	H	X	$\left(\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\mathrm{SD}}\right) \mathrm{H}$
Overtemperature	H	L	$\mathrm{T}, ~ \mathrm{~T}_{\mathrm{SD}} \mathrm{L}$
Output Voltage $>\mathrm{V}_{\mathrm{OL}}$	H	L	L
Output Current $<\mathrm{IOL}$	L	H	L
	H	L	H

Figure 5. Undervoltage Shutdown vs. Temperature

Figure 7. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D}

Figure 9. Output Leakage vs. V_{D} $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

Figure 6. Overvoltage Shutdown vs.
Temperature

Figure 8. OFF State Standby Current vs. V_{D}

Figure 10. $\mathrm{V}_{\text {in }}$ Threshold High vs. Temperature

Figure 11. $\mathrm{V}_{\text {in }}$ Threshold Low vs. Temperature

Figure 13. Input Clamp Voltage (Positive) vs. Temperature

Figure 15. Turn On Time vs. \mathbf{V}_{D}

Figure 12. Input Current vs. Temperature

Figure 14. Input Clamp Voltage (Negative) vs. Temperature

Figure 16. Turn Off Time vs. V_{D}

TYPICAL CHARACTERISTICS CURVES

Figure 17. Slew Rate $\mathbf{O N}$ vs. V_{D}

Figure 19. Forward Voltage (@-1.3 A) vs. Temperature

Figure 21. Status Leakage Current vs. Temperature

Figure 18. Slew Rate OFF vs. \mathbf{V}_{D}

Figure 20. STAT Low Voltage vs. V_{D}

Figure 22. Status Clamp Voltage (Positive) vs. Temperature

Figure 23. Status Clamp Voltage (Negative) vs. Temperature

Figure 25. Turn Off Output Clamp Voltage vs. V_{D} and Temperature

Figure 27. Off State OL Detection Threshold vs. V_{D} and Temperature

Figure 24. Current Limit vs. Temperature
$V_{D}=13.5 \mathrm{~V}$

Figure 26. ON State Open Load Detection vs. Temperature $\mathrm{V}_{\mathrm{D}}=13.5 \mathrm{~V}$

Figure 28. Single-Pulse Maximum Switch-off Current vs. Load Inductance

TYPICAL CHARACTERISTICS CURVES

Figure 29. Single-Pulse Maximum Switch-off Current vs. Load Inductance

ISO 7637-2: 2004(E) PULSE TEST RESULTS

ISO 7637-2:2004(E)	Test Levels				Delays and
Test Pulse	I	II	III	IV	Impedance
1	-25 V	-50 V	-75 V	-100 V	$2 \mathrm{~ms}, 10 \Omega$
2 a	+25 V	+50 V	+37 V	+50 V	$0.05 \mathrm{~ms}, 10 \Omega$
3 a	-25 V	-50 V	-112 V	-150 V	$0.1 \mu \mathrm{~s}, 50 \Omega$
3 b	+25 V	+50 V	+75 V	+100 V	$0.1 \mu \mathrm{~s}, 50 \Omega$
4	-4 V	-5 V	-6 V	-7 V	$5 \mathrm{~s}, .01 \Omega$
5 (Load Dump)	+26.5 V	+46.5 V	+66.5 V	+86.5 V	$400 \mathrm{~ms}, 2 \Omega$

ISO 7637-2:2004(E)	Test Results			
Test Pulse	I	II	III	IV
1	C	C	C	C
2a	C	C	C	C
3 a	C	C	C	C
3b	C	C	C	C
4	C	C	C	C
5 (Load Dump)	C	E	E	E

Class	Functional Status
A	All functions of a device perform as designed during and after exposure to disturbance.
B	All functions of a device perform as designed during exposure. However,one or more of
	them can go beyond specified tolerance. All functions return automatically to within normal
	limits after exposure is removed. Memory functions shall remain class A.
C	One or more functions of a device do not perform as designed during exposure but return
	automatically to normal operation after exposure is removed.
E	One or more functions of a device do not perform as designed during exposure and do not return to normal operation until exposure is removed and the device is reset by simple
	One or more functions of a device do not perform as designed during and after exposure and cannot be returned to proper operation without replacing the device.

Figure 30. Waveforms

Figure 31. Application Diagram

Reverse Battery Protection

An external resistor $\mathrm{R}_{\mathrm{GND}}$ is required to adequately protect the device from a Reverse Battery event. The resistor value can be calculated using the following two formulas.

1. $\mathrm{R}_{\mathrm{GND}} \leq 600 \mathrm{mV} /$ (I_{d} (on) max)
2. $\mathrm{R}_{\mathrm{GND}} \geq\left(-\mathrm{V}_{\mathrm{D}}\right) /\left(-\mathrm{I}_{\mathrm{gnd}}\right)$

Maximum (-Ignd) current, which is the reverse GND pin current, can be found in the Maximum Ratings section. Several High Side Devices can share same the reverse battery protection resistor. Please note that the sum of (I_{d} (on) max) of all devices should be used to calculate $\mathrm{R}_{\mathrm{GND}}$ value. If the microprocessor ground is not common with the device ground, $\mathrm{R}_{\mathrm{GND}}$ will produce a voltage offset ($\left(\mathrm{I}_{\mathrm{d}}(\mathrm{on})\right.$ $\max) \times \mathrm{R}_{\mathrm{GND}}$) with respect to the IN and STAT pins.

This offset will be increased when more than one device shares the resistor.

Power Dissipation during a reverse battery event is equal to:

$$
\mathrm{P}_{\mathrm{D}}=\left(-\mathrm{V}_{\mathrm{D}}\right)^{2} / \mathrm{R}_{\mathrm{GND}}
$$

In the case of high power dissipation due to several devices sharing $\mathrm{R}_{\mathrm{GND}}$, it is recommended to place a diode $\mathrm{D}_{\mathrm{GND}}$ in the ground path as an alternate reverse battery protection method. When driving an inductive load, a $1 \mathrm{k} \Omega$ resistor should be placed in parallel with the $\mathrm{D}_{\mathrm{GND}}$ diode. This method will also produce a voltage offset of $\sim 600 \mathrm{mV}$ with respect to the IN and STAT pins. This diode can also be shared amongst several High Side Devices. This voltage offset will vary if $\mathrm{D}_{\mathrm{GND}}$ is shared by multiple devices.

OFF State Open Load Detection

Off State Open Load Detection requires an external pull-up resistor ($\mathrm{R}_{\text {pull-up }}$) connected between $\mathrm{V}_{\text {OUT }}$ pin and a positive supply voltage ($\mathrm{V}_{\text {pull-up }}$).
The external $\mathrm{R}_{\text {pull-up }}$ resistor value should be selected to ensure that a false OFF State OL condition is not detected when the load $\left(R_{L}\right)$ is connected. A $V_{\text {OUT }}$ voltage above the $V_{\text {OL_min }}$ (Openload Off State Detection Threshold) minimum value with the load $\left(\mathrm{R}_{\mathrm{L}}\right)$ connected needs to be avoided. The following formula shows this relationship:

$$
V_{\text {OUT }}=\left(V_{\text {pull -up }} /\left(R_{L}+R_{\text {pull -up }}\right)\right) R_{L}<V_{\text {OL_min }}
$$

In addition to ensuring the selected $\mathrm{R}_{\text {pull-up }}$ resistor value does not cause a false OFF State OL detection condition
when the load is connected, the $\mathrm{R}_{\text {pull-up }}$ must also not cause the OFF State OL to miss detecting an OL condition when the load is disconnected. A V Vut voltage below the $\mathrm{V}_{\text {OL_max }}$ (Openload Off State Detection Threshold) maximum value with the load $\left(\mathrm{R}_{\mathrm{L}}\right)$ disconnected needs to be avoided. The following formula shows this relationship:

$$
\begin{gathered}
\mathrm{R}_{\text {pull }- \text { up }}<\left(\mathrm{V}_{\text {pull -up }}-\mathrm{V}_{\text {OL_max }}\right) / \mathrm{OL}_{1} \\
\mathrm{OL}_{1}=\mathrm{I}_{\mathrm{L}}\left(\text { Output Leakage with } \mathrm{V}_{\text {OUT }}=3.5 \mathrm{~V}\right)
\end{gathered}
$$

Because I_{d} (OFF) may significantly increase if $\mathrm{V}_{\text {OUT }}$ is pulled high (up to several mA), $\mathrm{R}_{\text {pull-up }}$ resistor should be connected to a supply that is switched OFF when the module is in standby.

Figure 33. Transient Thermal Impedance

Figure 34. R $_{\text {өJA }}$ vs Copper Area

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

