NCV8509 Series

Voltage Regulator Sequenced Linear, Dual

The NCV8509 Series are dual voltage regulators whose output voltages power up in such a manner as to protect the integrity of modern day microcontroller I/O and ESD input structures. Newer generation microcontrollers require two power supplies. One voltage is used for powering the core, while the other powers the I / O.

Features

- Power-Up Sequence
- Output Voltage Options:
- Vout1 5 V ($\pm 2 \%) 115 \mathrm{~mA}, \mathrm{~V}_{\text {OUT2 }} 2.6 \mathrm{~V}(2 \%) 100 \mathrm{~mA}$
- Vout1 5 V ($\pm 2 \%) 115 \mathrm{~mA}, \mathrm{~V}_{\text {OUT2 }} 2.5 \mathrm{~V}(2 \%) 100 \mathrm{~mA}$
- V OUT1 $3.3 \mathrm{~V}(\pm 2 \%) 115 \mathrm{~mA}, \mathrm{~V}_{\text {OUT2 }} 1.8 \mathrm{~V}(2 \%) 100 \mathrm{~mA}$
- Low $175 \mu \mathrm{~A}$ Quiescent Current
- Power Shunt
- Programmable $\overline{\text { RESET Time }}$
- Dual Drive RESET Valid
- Programmable SLEW Rate Control
- Thermal Shutdown
- 16 Lead SOW Exposed Pad
- NCV Prefix, for Automotive and Other Applications Requiring Site and Change Control
- AEC Qualified
- PPAP Capable
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Automotive Powertrain
- Telematics

ON Semiconductor ${ }^{\oplus}$
http://onsemi.com

SOIC 16 LEAD WIDE BODY EXPOSED PAD PDW SUFFIX CASE 751AG

MARKING DIAGRAM

16
ABABABAB
NCV8509xx AWLYYWWG

xx = Voltage Ratings as Indicated
Below:
$26=5 \mathrm{~V} / 2.6 \mathrm{~V}$
$25=5 \mathrm{~V} / 2.5 \mathrm{~V}$
$18=3.3 \mathrm{~V} / 1.8 \mathrm{~V}$

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Device

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

Figure 1. Application Diagram

NCV8509 Series

MAXIMUM RATINGS

Rating		Value	Unit
$\mathrm{V}_{\mathrm{IN} 1}$ (dc)		-0.3 to 50	V
$\mathrm{V}_{\text {IN } 1}$ Peak Transient Voltage		50	V
$\mathrm{V}_{\text {IN } 2}$ (dc)		50	V
$\mathrm{V}_{\text {IN2 }}$ (Current out of pin)		10	mA
Operating Voltage		50	V
Input Voltage Range (SLEW, RESET, Delay)		-0.3 to 10	V
$\mathrm{V}_{\text {OUT1 }}$		10	V
$V_{\text {OUT2 }}$		10	V
Electrostatic Discharge (Human Body Model) (Machine Model)		$\begin{aligned} & 4.0 \\ & 400 \end{aligned}$	$\begin{gathered} \mathrm{kV} \\ \mathrm{~V} \end{gathered}$
Package Thermal Resistance, SOW-16 E Pad:	Junction-to-Case, R ®JC Junction-to-Ambient, $\mathrm{R}_{\theta \mathrm{JA}}$	$\begin{aligned} & 16 \\ & 57 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline{ }^{\circ} \mathrm{CNN} \end{aligned}$
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1)	240 peak (Note 2)	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. 60 second maximum above $183^{\circ} \mathrm{C}$.
2. $-5^{\circ} \mathrm{C} /+0^{\circ} \mathrm{C}$ allowable conditions.

ELECTRICAL CHARACTERISTICS $\left(6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN} 1}<18 \mathrm{~V}, \mathrm{I}_{\text {VOUT } 1}=5.0 \mathrm{~mA}\right.$, $\mathrm{I}_{\text {VOUT } 2}=5.0 \mathrm{~mA},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$, C $_{\text {VOUT1 }}=$ C $_{\text {VOUT2 }}=10 \mu \mathrm{~F}$; unless otherwise noted.)

Characteristic	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OUT1 }}$					
Output Voltage 5 V Option 3.3 V Option	$\begin{aligned} & 1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT } 1}<100 \mathrm{~mA} \\ & 1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT } 1}<100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4.9 \\ 3.234 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$	$\begin{gathered} 5.1 \\ 3.366 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Dropout Voltage ($\left.\mathrm{V}_{\text {IN } 1}-\mathrm{V}_{\text {OUT } 1}\right)$	$\begin{aligned} & \text { I OUT }=100 \mathrm{~mA} \\ & \text { IOUT }=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation	1.0 mA < $\mathrm{I}_{\text {VOUT } 1}<100 \mathrm{~mA}$	-	10	50	mV
Line Regulation	$6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN} 1}<18 \mathrm{~V}$	-	10	50	mV
Current Limit	$\begin{aligned} & \mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT1 }} \text { (typ) }-500 \mathrm{mV} \\ & \mathrm{~V}_{\text {OUT1 }}=0 \mathrm{~V} \end{aligned}$	115	$\begin{aligned} & 305 \\ & 105 \end{aligned}$	$\begin{aligned} & 610 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

$\mathrm{V}_{\text {OUT2 }}$

Output Voltage					
2.6 V Option	$1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT2 }}<100 \mathrm{~mA}$	2.548	2.6	2.652	V
2.5 V Option	$1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT2 }}<100 \mathrm{~mA}$	2.450	2.5	2.550	V
1.8 V Option	$1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT2 }}<100 \mathrm{~mA}$	1.764	1.8	1.836	V
Load Regulation	$1.0 \mathrm{~mA}<\mathrm{I}_{\text {VOUT2 }}<100 \mathrm{~mA}$	-	5.0	50	mV
Line Regulation	$6.0 \mathrm{~V}<\mathrm{V}_{\text {IN1 }}=\mathrm{V}_{\text {IN2 }}<18 \mathrm{~V}$	-	10	50	mV
Current Limit	$\mathrm{V}_{\text {OUT2 }}=\mathrm{V}_{\text {OUT2 }}($ typ $)-500 \mathrm{mV}$	105	305	610	mA
	$\mathrm{~V}_{\text {OUT2 }}=0 \mathrm{~V}$	-	105	300	mA

General

$\left.\begin{array}{|l|l|c|c|c|c|}\hline \text { Quiescent Current } & \begin{array}{l}\text { IOUT1 }\end{array}=I_{\text {OUT2 }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN } 1}=12 \mathrm{~V} & - & 125 & 175 & \mu \mathrm{~A} \\ & \mathrm{I}_{\text {OUT } 1}=\mathrm{I}_{\text {OUT2 }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN} 1}=14 \mathrm{~V}\end{array}\right)$

[^0]ELECTRICAL CHARACTERISTICS (continued) $\left(6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN} 1}<18 \mathrm{~V}\right.$, $\mathrm{I}_{\text {VOUT } 1}=5.0 \mathrm{~mA}, \mathrm{I}_{\text {VOUT } 2}=5.0 \mathrm{~mA},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$, $C_{\text {VOUT1 }}=$ C $_{\text {VOUT2 }}=10 \mu \mathrm{~F}$; unless otherwise noted.)

Characteristic	Test Conditions	Min	Typ	Max	Unit
SLEW					
SLEW Charging Current	SLEW $=1.0 \mathrm{~V}$	4.0	6.0	8.0	$\mu \mathrm{A}$
Vout 1 SLEW Rate (Note 4) 5 V Option 3.3 V Option	$\mathrm{C}_{\text {SLEW }}=33 \mathrm{nF}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 710 \\ & 469 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{s} \\ & \mathrm{~V} / \mathrm{s} \end{aligned}$
$V_{\text {OUT2 }}$ SLEW Rate 2.6 V Option 2.5 V Option 1.8 V Option	$\mathrm{C}_{\text {SLEW }}=33 \mathrm{nF}$	-	$\begin{aligned} & 370 \\ & 355 \\ & 256 \end{aligned}$	-	$\begin{aligned} & \mathrm{V} / \mathrm{s} \\ & \mathrm{~V} / \mathrm{s} \\ & \mathrm{~V} / \mathrm{s} \end{aligned}$
SLEW Control Threshold	(See Figure 53)	1.5	1.8	2.1	V

RESET

RESET Threshold Increasing (Note 5)	-	94.5	96.5	98.5	\%
RESET Threshold Decreasing 5 V Option 3.3 V Option 2.6 V Option 2.5 V Option 1.8 V Option	-	$\begin{gathered} 4.5 \\ 2.97 \\ 2.34 \\ 2.25 \\ 1.62 \end{gathered}$	$\begin{aligned} & 4.73 \\ & 3.12 \\ & 2.46 \\ & 2.36 \\ & 1.70 \end{aligned}$	$0.965 \times \mathrm{V}_{\text {OUT }}$ $0.965 \times V_{\text {OUT }}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
RESET Output Low	$l_{\text {RESET }}=1.0 \mathrm{~mA}$	-	0.1	0.4	V
RESET Output Peak	Power Down (See Figure 41)	-	0.6	1.0	V
RESET Threshold Hysteresis 5 V Option 3.3 V Option 2.6 V Option 2.5 V Option 1.8 V Option	-	$\begin{aligned} & 50 \\ & 33 \\ & 26 \\ & 25 \\ & 18 \end{aligned}$	$\begin{gathered} 100 \\ 66 \\ 52 \\ 50 \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 99 \\ 78 \\ 75 \\ 54 \end{gathered}$	mV mV mV mV mV

Delay

Delay Switching Threshold	-	1.125	1.5	1.875	V
Delay Charge Current	Delay $=1.0 \mathrm{~V}$	4.0	6.0	8.0	$\mu \mathrm{~A}$
Delay Saturation Voltage	$V_{\text {OUT1 } 1}$ Out of Regulation	-	-	0.1	V
Delay Discharge Current	Delay $=5.0 \mathrm{~V}$ V OUT1 $^{\prime}$ out of Regulation	10	-	-	mA

Output Tracking

Delta 1 [V ${ }_{\text {OUT1 }}$ - $\mathrm{V}_{\text {OUT2 }}$] 5 V Option $3.3 \vee$ Option	$\mathrm{C}_{\text {OUT1 }}=\mathrm{C}_{\text {OUT2 }}, \mathrm{I}_{\text {OUT1 }}=\mathrm{I}_{\text {OUT2 }}$ $\mathrm{C}_{\text {OUT1 }}=\mathrm{C}_{\text {OUT2 }}, \mathrm{I}_{\text {OUT1 }}=\mathrm{I}_{\text {OUT2 }}$	-	-	$\begin{aligned} & 3.2 \\ & 2.8 \end{aligned}$	V
Delta 2 [$\mathrm{VOUT2}^{-}$- $\mathrm{V}_{\text {OUT1 }}$]	$\mathrm{C}_{\text {OUT1 }}=\mathrm{C}_{\text {OUT2 }}, \mathrm{I}_{\text {OUT1 }}=\mathrm{I}_{\text {OUT2 }}$	-	-	100	mV

Power Shunt

Shunt Voltage $1\left(\mathrm{~V}_{\mathrm{IN} 2}\right)$	$\mathrm{V}_{\mathrm{IN} 1}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT} 2}=100 \mathrm{~mA}, \mathrm{No} \mathrm{R}_{\mathrm{EX}}$	3.3	-	4.6	V
Shunt Voltage $2\left(\mathrm{~V}_{\mathrm{IN} 2}\right)$	$\mathrm{V}_{\mathrm{IN} 1}=12 \mathrm{~V}, 1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{OUT} 2}<100 \mathrm{~mA}$, No R_{EX}	3.25	4.5	5.75	V

4. Not a tested parameter.
5. RESET signal sensitive to $\mathrm{V}_{\text {OUT } 1}$ and $\mathrm{V}_{\text {OUT2 }}$.

PIN DESCRIPTION

Pin No.	Symbol	Description
1	SLEW	Control for output rise time during power up. Requires capacitor to ground.
2	Delay	Timing capacitor for RESET function.
3	GND	Ground.
$4,5,7-9,11,14,16$	NC	No connection.
6	RESET	Active reset (accurate to $\left.\mathrm{V}_{\text {OUT }}>1.0 \mathrm{~V}\right)$.
10	$\mathrm{~V}_{\text {OUT2 }}$	100 mA output $(\pm 2 \%$ output voltage) for powering microprocessor core.
12	$\mathrm{~V}_{\text {IN2 }}$	Input voltage for $\mathrm{V}_{\text {OUT2. }}$
13	$\mathrm{~V}_{\text {IN1 }}$	Input voltage for $\mathrm{V}_{\text {OUT1 }}$, and internal circuitry.
15	$\mathrm{~V}_{\text {OUT1 }}$	100 mA output $(\pm 2 \%$ output voltage) for powering microprocessor I/O.

Figure 2. Block Diagram

NCV8509 Series

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. 2.6 V Output Voltage

Figure 5. 2.5 V Output Voltage

Figure 7. 5.0 V Output Voltage

Figure 4. 3.3 V Output Voltage

Figure 6. 1.8 V Output Voltage

Figure 8. $\mathrm{V}_{\mathrm{IN} 2}$ versus $\mathrm{V}_{\mathrm{IN} 1}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. I_{Q} versus lout1

Figure 11. I_{Q} versus $\mathrm{l}_{\mathrm{OUT}}$

Figure 13. I_{Q} versus Iout
(VOUT1 \& $\mathrm{V}_{\text {OUT2 }}$)

Figure 10. I_{Q} versus $\mathrm{I}_{\mathrm{OUT} 1}$

Figure 12. I_{Q} versus $\mathrm{l}_{\mathrm{OUT}}$

Figure 14. I_{Q} versus IOUT (VOUT1 \& $\mathrm{V}_{\text {OUT2 }}$)

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. $\mathrm{V}_{\mathrm{OUT} 1}(5 \mathrm{~V})$ versus $\mathrm{V}_{\mathrm{IN} 1}$

Figure 17. $\mathrm{V}_{\text {OUT2 }}(2.6 \mathrm{~V})$ versus $\mathrm{V}_{\mathrm{IN} 1}$

Figure 16. $\mathrm{V}_{\text {OUT1 }}\left(\mathbf{3 . 3} \mathrm{V}\right.$) versus $\mathrm{V}_{\mathrm{IN} 1}$

Figure 18. $\mathrm{V}_{\text {OUT2 }}(\mathbf{2} .5 \mathrm{~V})$ versus $\mathrm{V}_{\mathrm{IN} 1}$

Figure 19. $\mathrm{V}_{\text {OUT2 }}$ (1.8 V) versus $\mathrm{V}_{\mathrm{IN} 1}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 20. Reset Delay Time versus Temperature

Figure 22. Slew Rate versus $\mathrm{C}_{\text {Slew }}$

Figure 24. $\mathrm{V}_{\mathrm{OUT} 1}$ Dropout Voltage

Figure 21. Reset Delay Time versus $\mathrm{C}_{\text {Delay }}$

Figure 23. Slew Rate versus Cslew

Figure 25. Quiescent Current vs. $\mathrm{V}_{\mathrm{IN} 1}$

NCV8509 Series

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 26. $\mathrm{V}_{\text {OUT } 1}$ Output Capacitor ESR ($10 \mu \mathrm{~F}$)

Figure 28. $\mathrm{V}_{\text {OUT1 }}$ Output Capacitor ESR ($0.1 \mu \mathrm{~F} / 1 \mu \mathrm{~F}$)

Figure 27. $\mathrm{V}_{\mathrm{OUT} 2}$ Output Capacitor ESR ($10 \mu \mathrm{~F}$)

Figure 29. V ESR ($0.1 \mu \mathrm{~F} / 1 \mu \mathrm{~F}$)

Figure 30. $\mathrm{V}_{\text {OUT2 }}$ (2.5 V) Output Capacitor ESR ($0.1 \mu \mathrm{~F} / 1 \mu \mathrm{~F})$

Figure 31. $\mathrm{V}_{\text {OUT2 }}$ (1.8 V) Output Capacitor ESR ($0.1 \mu \mathrm{~F} / 1 \mu \mathrm{~F}$)

TYPICAL PERFORMANCE CHARACTERISTICS

(Load Transient waveforms shown were measured on the $5 \mathrm{~V} / 2.6 \mathrm{~V}$ device)

Figure 32. V $_{\text {out } 1}$ Load Transient Response 100 mA to No Load \& No Load to 100 mA

Figure 34. $\mathrm{V}_{\text {Out1 }}$ Load Transient Response 100 mA to No Load

Vout1 - Load Transient Response No Load to 100 mA
Figure 36. V ${ }_{\text {Out } 1}$ Load Transient Response No Load to 100 mA

Figure 33. $\mathrm{V}_{\text {OUT2 }}$ Load Transient Response 100 mA to No Load \& No Load to 100 mA

Figure 35. $\mathrm{V}_{\text {OUT2 }}$ Load Transient Response 100 mA to No Load

Vout2 - Load Transient Response No Load to 100 mA
Figure 37. Vout2 Load Transient Response No Load to 100 mA

NCV8509 Series

TIMING DIAGRAMS

Figure 38. Response to Impulse

Figure 39. Output Decay vs. Load Impedance

Figure 40. V_{IN} Power Shunt

NCV8509 Series

CIRCUIT DESCRIPTION

Figure 41. Dual Drive RESET Valid

RESET

The $\overline{\text { RESET }}$ function gets its drive from both the input ($\mathrm{V}_{\mathrm{IN} 1}$) and the output $\left(\mathrm{V}_{\text {OUT1 }}\right)$. Because of this, it is able to maintain a more reliable reset valid signal. Most regulators maintain a valid reset signal down to 1 V on the output voltage. The reset on the NCV8509 is valid down to 0 V on the output voltage $\mathrm{V}_{\text {OUT1 }}$ (power is provided via $\mathrm{V}_{\text {IN1 }}$) and the reset on the NCV8509 is valid down to 0 V on the input voltage $\mathrm{V}_{\text {IN1 }}$ (power is provided via $\mathrm{V}_{\text {OUT1 }}$). Refer to Figure 41 for operation timing diagrams.

Delay Function

The reset delay circuit provides a programmable (by external capacitor) delay on the RESET output lead.

The delay lead provides source current (typically $6.0 \mu \mathrm{~A}$) to the external delay capacitor during the following proceedings:

1. During power up (once the regulation threshold has been verified);
2. After a reset event has occurred and the device is back in regulation.

The delay capacitor is discharged when the regulation ($\overline{\text { RESET }}$ threshold) has been violated. This is a latched incident. The capacitor will fully discharge and wait for the device to regulate before going through the delay time event again.

Power Shunt

$\mathrm{R}_{\text {EX }}$ routes some of the current used in the $\mathrm{V}_{\text {OUT2 }}$ to a second input pin ($\mathrm{V}_{\mathrm{IN} 2}$). This is accomplished by using an internal shunt. A simplified version of this shunt is shown in Figure 42. This has the effect of reducing the amount of power dissipated on chip. The effects of choosing the external resistor value are shown in Figure 43.

Selection of the optimum Rex resistor value can be done using the following equation:

$$
\frac{\left(V_{\operatorname{in}(\max)}-4.5\right)}{l_{\text {out2 }}(\max)}
$$

When not using the power shunt, short $V_{\text {IN1 }}$ to $V_{\text {IN2 }}$.

Figure 42. Power Shunt

Figure 43. Power On Chip

Figure 44.

Figure 45.

Figure 46.

Why Use a Power Shunt?

The power shunt circuitry helps manage and optimize power dissipation on the integrated circuit.

Figure 44 shows a 100 mA load. A 135Ω resistor dissipates 1.35 W as shown.

Without the power shunt, the 135Ω resistor would run into head room issues at 6.0 V and would only be able to drive 21.5 mA as shown in Figure 45 before causing the 2.5 V output to collapse.

Figure 46 shows the power shunt circuitry adding the current back in at low voltage operation. So the power is moved off chip at high voltage where it is needed most.

To further clarify, Figure 47 shows the maximum allowed resistor value (29Ω) without the power shunt for 6.0 V operation.

Figure 48 shows the scenario at high voltage. Only 290 mW of power is dissipated off chip compared to Figure 44 with 1.35 W .

Figure 47.

Figure 48.

NCV8509 Series

Power Dissipation

NCV8509 has a power shunt circuit which reduces the power on chip by utilizing an external resistor, R_{EX}. Thus the power on chip, P_{IC}, is equal to the total power, P_{T}, minus the power dissipated in the resistor $\mathrm{P}_{\text {REX }}$. Refer to Figure 49.

$$
\begin{equation*}
\text { PIC }=\text { PTOTAL }- \text { PREX }^{\text {R }} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\text { PTOTAL }= & \left(\mathrm{V}_{\text {IN } 1}-\mathrm{V}_{\text {OUT1 }}\right) \text { IOUT1 } \tag{2}\\
& +\left(\mathrm{V}_{\text {IN } 1}-\mathrm{V}_{\text {OUT2 } 2}\right) \text { IOUT2 }+\left(\mathrm{V}_{\text {IN } 1} \times \mathrm{Iq}\right)
\end{align*}
$$

and

$$
\begin{equation*}
P_{\text {REX }}=\left(V_{\text {IN1 }}-V_{\text {IN2 }}\right) \text { IOUT2 } \tag{3}
\end{equation*}
$$

Figure 49.

$$
\begin{aligned}
& V_{\text {IN2 }}=\left\{\begin{array}{l}
\cdots \cdot \\
V_{\text {REF }} \\
V_{\text {IN1 }}-(\text { IOUT2 } \times \text { REX })
\end{array}\right. \\
& \text { for } \mathrm{V}_{\text {IN1 }}<\left(\mathrm{V}_{\text {REF }}+\mathrm{V}_{\text {SAT }}\right) \\
& \text { for }\left(V_{\text {REF }}+V_{\text {SAT }}\right)<\mathrm{V}_{\text {IN }} 1<\left(\mathrm{V}_{\text {REF }}+(\text { IOUT2 } \times \text { REX })\right) \\
& \text { for }\left(\mathrm{V}_{\text {REF }}+(\mathrm{IOUT} \times \text { IOUT })\right)<\mathrm{V}_{\text {IN1 }} \\
& \text { where } \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}} \text { when } \mathrm{Q} 1 \text { is normally conducting. }
\end{aligned}
$$

Based on equation 3, the power in R_{EX} is dependent on $\mathrm{V}_{\text {IN2 }}$. (Increasing $\mathrm{R}_{\text {EX }}$ may require an increase in $\mathrm{C}_{\text {IN2 }}$. A careful system validation should be performed for stability). The voltage on $\mathrm{V}_{\text {IN2 }}$ is controlled by the shunt circuit, which has three modes of operation, as seen in Figure 50.

Mode 1. At low battery $\mathrm{V}_{\mathrm{IN} 2}$ is equal to $\mathrm{V}_{\mathrm{IN} 1}$ minus the saturation voltage of the shunt output NPN.

Mode 2. Once $\mathrm{V}_{\text {IN1 }}$ rises above the reference voltage of the shunt circuit, $\mathrm{V}_{\text {IN2 }}$ will regulate at the $\mathrm{V}_{\text {REF }}$.

Mode 3. $\mathrm{V}_{\text {IN2 }}$ would continue to regulate at $\mathrm{V}_{\text {REF }}$, but since $\mathrm{I}_{\mathrm{OUT} 2}$ is not infinite, when $\mathrm{V}_{\mathrm{IN} 1}$ rises higher than the
reference voltage plus the voltage drop across the external resistor R_{EX}, it will force $\mathrm{V}_{\mathrm{IN} 2}$ to be $\mathrm{V}_{\mathrm{IN} 1}-\left(\mathrm{I}_{\text {OUT2 }} \times \mathrm{R}_{\mathrm{EX}}\right)$.

Equation 4 provides a summary for $\mathrm{V}_{\text {IN2 }}$.
Combining equations 3 and 4 gives three different equations for power across R_{EX}.

$$
\begin{gather*}
\text { PMODE1 }=(\text { VSAT } \times \text { IOUT2 }) \tag{5}\\
\text { PMODE2 }=\left(\mathrm{V}_{\text {IN1 }}-\mathrm{V}_{\text {REF }}\right) \times \text { IOUT2 } \tag{6}\\
\text { PMODE3 }=\text { IOUT2 }^{2} \times \text { REX } \tag{7}
\end{gather*}
$$

Figure 50. V_{IN} Shunt

Figure 51. 16 Lead SOW (Exposed Pad), θ JA as a Function of the Pad Copper Area (2 oz. Cu Thickness), Board Material $=0.0625^{\prime \prime}$ G-10/R-4

Once the value of $\mathrm{P}_{\mathrm{IC}(\max)}$ is known, the maximum permissible value of $\mathrm{R}_{\theta J \mathrm{~A}}$ can be calculated:

$$
\begin{equation*}
\mathrm{R}_{\theta J \mathrm{~A}}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{\mathrm{PIC}} \tag{8}
\end{equation*}
$$

The value of $\mathrm{R}_{\theta J \mathrm{~A}}$ can then be compared with those in the package section of the data sheet. Those packages with
$\mathrm{R}_{\theta \mathrm{JA}}$'s less than the calculated value in equation 2 will keep the die temperature below $150^{\circ} \mathrm{C}$.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

Heat Sinks

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $\mathrm{R}_{\theta \mathrm{JA}}$:

$$
\begin{equation*}
R_{\theta J A}=R_{\theta J C}+R_{\theta C S}+R_{\theta S A} \tag{9}
\end{equation*}
$$

where:
$\mathrm{R}_{\theta \mathrm{JC}}=$ the junction-to-case thermal resistance,
$\mathrm{R}_{\theta C S}=$ the case-to-heatsink thermal resistance, and
$\mathrm{R}_{\theta S \mathrm{SA}}=$ the heatsink-to-ambient thermal resistance.
$\mathrm{R}_{\theta \mathrm{\theta JC}}$ appears in the package section of the data sheet. Like $R_{\theta J A}$, it too is a function of package type. $R_{\theta C S}$ and $R_{\theta S A}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers.

Figure 52. Fault Response. Note the High SLEW Rate Coming Out of Fault Conditions. Soft Start Only Applies to a Power Up Sequence.

Slew Rate Control

Figure 53 shows the circuitry associated with Slew Rate Control. The diagram highlights the control of one output for simplicity. $V_{\text {OUT1 }}$ and $V_{\text {OUT2 }}$ are both controlled on the IC.

The slew rate capacitor (CSLEW) is charged with an on-chip current source runing at $6.0 \mu \mathrm{~A}$ (typ.). Charging a capacitor with a current source creates a linear voltage ramp as shown in Figure 54.

The lowest voltage to the positive terminals of the comparator (Error Amp) dominates the output voltage ($\mathrm{V}_{\text {OUT }}$). Consequently, when CSLEW is fully discharged on power up, it is the dominant factor on the positive terminal and disables the output. The output ($\mathrm{V}_{\text {OUT }}$) follows the linear ramp on the SLEW pin (after being gained up with R1 and R2) until V_{BG} becomes the dominant voltage. This occurs when SLEW $=\mathrm{V}_{\mathrm{BG}}+\mathrm{V}_{\mathrm{D} 1}$ or approximately 1.8 V .

Figure 53. Slew Control Circuitry

Slew time can be calculated using the standard capacitor equation.

$$
\mathrm{I}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}, \quad \mathrm{t}=\frac{\mathrm{C}(\Delta \mathrm{~V})}{\mathrm{I}}
$$

Using a 33 nF capacitor, the slew time is:

$$
\mathrm{t}=\frac{(33 \mathrm{nF})(1.8 \mathrm{~V})}{6 \mu \mathrm{~A}}=9.9 \mathrm{~ms}
$$

The corresponding slew rate for this is $1.8 \mathrm{~V} / 9.9 \mathrm{~ms}=$ 182 V/s ON THE SLEW PIN.
To calculate the slew rate on outputs, you must multiply by the gain set up by R1 and R2.

$$
A_{V}=\frac{V_{\mathrm{OUT}}}{1.28 \mathrm{~V}}
$$

For a 5 V output, the gain would be:

$$
A_{V}=\frac{5 \mathrm{~V}}{1.28 \mathrm{~V}}=3.9 \mathrm{~V} / \mathrm{V}
$$

assuming $\mathrm{V}_{\mathrm{BG}}=1.28 \mathrm{~V}$.
The resultant slew rate on the output is the slew rate on the SLEW pin multiplied by the gain, or:

Figure 54.

NCV8509 Series

ORDERING INFORMATION

Device	Output Voltage	Package	Shipping ${ }^{\dagger}$
NCV8509PDW18G	$3.3 \mathrm{~V} / 1.8 \mathrm{~V}$	SOIC 16 Lead (Pb-Free)	47 Units/Rail
NCV8509PDW18R2G		SOIC 16 Lead (Pb -Free)	1000 Tape \& Reel
NCV8509PDW25G	$5 \mathrm{~V} / 2.5 \mathrm{~V}$	SOIC 16 Lead (Pb-Free)	47 Units/Rail
NCV8509PDW25R2G		SOIC 16 Lead (Pb-Free)	1000 Tape \& Reel
NCV8509PDW26G	$5 \mathrm{~V} / 2.6 \mathrm{~V}$	SOIC 16 Lead (Pb-Free)	47 Units/Rail
NCV8509PDW26R2G		SOIC 16 Lead (Pb-Free)	1000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC 16 LEAD WIDE BODY, EXPOSED PAD
CASE 751AG
ISSUE B
DATE 31 MAY 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL PROTRUSION. ALLOWABLE PROTRUSION S BE 0.13 (0.005) TOTALIN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION
6. 751R-01 OBSOLETE, NEW STANDARD 751R-02.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	10.15	10.45	0.400	0.411
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27 BSC		0.050 BSC	
H	3.45	3.66	0.136	0.144
J	0.25	0.32	0.010	0.012
K	0.00	0.10	0.000	0.004
L	4.72	4.93	0.186	0.194
M	0	\circ	$7{ }^{\circ}$	0

GENERIC
MARKING DIAGRAM*
A日GABA日B

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}$-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

DIMENSIONS: INCHES
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON21237D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16, WB EXPOSED PAD | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3

[^0]: 3. Both outputs will turn off.
