LDO Regulator, 100 mA , $18 \mathrm{~V}, 1 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$, with PG

NCV8711

The NCV8711 device is based on unique combination of features very low quiescent current, fast transient response and high input and output voltage ranges. The NCV8711 is CMOS LDO regulator designed for up to 18 V input voltage and 100 mA output current. Quiescent current of only $1 \mu \mathrm{~A}$ makes this device ideal solution for battery- powered, always-on systems. Several fixed output voltage versions are available as well as the adjustable version.

The device (version B) implements power good circuit (PG) which indicates that output voltage is in regulation. This signal could be used for power sequencing or as a microcontroller reset.

Internal short circuit and over temperature protections saves the device against overload conditions.

Features

- Operating Input Voltage Range: 2.7 V to 18 V
- Output Voltage: 1.2 V to 17 V
- Capable of Sourcing 140 mA Peak Output Current
- Very Low Quiescent Current: $1 \mu \mathrm{~A}$ typ.
- Low Dropout: 215 mV typ. at 100 mA
- Output Voltage Accuracy $\pm 1 \%$
- Power Good Output (Version B)
- Stable with Small 1μ F Ceramic Capacitors
- Built-in Soft Start Circuit to Suppress Inrush Current
- Over-Current and Thermal Shutdown Protections
- Available in Small TSOP-5 and WDFNW6 (2x2) Packages
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Typical Applications

- Body Control Modules
- LED Lighting
- On Board Charger
- General Purpose Automotive

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

(Note: Microdot may be in either location)

WDFNW6 (2x2)
CASE 511DW
MTW SUFFIX

XX = Specific Device Code
M = Date Code

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

NCV8711

TYPICAL APPLICATION SCHEMATICS

Figure 1. Fixed Output Voltage Application (No PG)

Figure 2. Adjustable Output Voltage Application (No PG)

Figure 3. Fixed Output Voltage Application with PG

Figure 4. Adjustable Output Voltage Application with PG

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{ADJ}} \cdot\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)+\mathrm{I}_{\mathrm{ADJ}} \cdot \mathrm{R}_{1}
$$

SIMPLIFIED BLOCK DIAGRAMS

Figure 5. Internal Block Diagram

PIN DESCRIPTION

Pin No. TSOP-5	Pin No. WDFNW6	Pin Name	Description
1	6	IN	Power supply input pin.
2	3	GND	Ground pin.
5	4	OUT	LDO output pin.
3	2	EN	Enable input pin (high - enabled, low - disabled). If this pin is connected to IN pin or if it is left unconnected (pull-up resistor is not required) the device is enabled.
4 (Note 1)	5	ADJ	Adjust input pin. Connect it to the output resistor divider or directly to the OUT pin.
4 (Note 1)	2,5	PG	Power good output pin. Could be left unconnected or could be connected to GND if not needed. High level for power ok, low level for fail.
4 (Note 1)	NC	Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.	
NA	EP	EPAD	Connect the exposed pad to GND.

1. Pin function depends on device version.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
VIN Voltage (Note 2)	$\mathrm{V}_{\text {IN }}$	-0.3 to 22	V
VOUT Voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to $\left[\left(\mathrm{V}_{1 N}+0.3\right)\right.$ or 22 V ; whichever is lower]	V
EN Voltage	V_{EN}	-0.3 to ($\mathrm{V}_{\mathrm{IN}}+0.3$)	V
ADJ Voltage	$\mathrm{V}_{\text {FB/ADJ }}$	-0.3 to 5.5	V
PG Voltage	$V_{\text {PG }}$	-0.3 to ($\left.\mathrm{V}_{\mathrm{IN}}+0.3\right)$	V
Output Current	IOUT	Internally limited	mA
PG Current	$\mathrm{I}_{\text {PG }}$	3	mA
Maximum Junction Temperature	$\mathrm{T}_{\text {(MAX) }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to 150	${ }^{\circ} \mathrm{C}$
ESD Capability, Human Body Model (Note 3)	ESD ${ }_{\text {HBM }}$	2000	V
ESD Capability, Charged Device Model (Note 3)	ESD ${ }_{\text {CDM }}$	1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per ANSI/ESDA/JEDEC JS-001, EIA/JESD22-A114 (AEC-Q100-002)
ESD Charged Device Model tested per ANSI/ESDA/JEDEC JS-002, EIA/JESD22-C101 (AEC-Q100-011D)
THERMAL CHARACTERISTICS (Note 4)

Characteristic	Symbol	WDFNW6 2x2	TSOP-5	Unit
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {thJA }}$	63	147	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case (top)	$\mathrm{R}_{\text {thJCt }}$	204	82	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case (bottom)	$\mathrm{R}_{\text {thJCb }}$	15	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Board (top)	$\mathrm{R}_{\text {thJBt }}$	47	113	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter, Junction-to-Case (top)	Psijuct	4	22	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter, Junction-to-Board [FEM]	PsijB	46	113	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4. Measured according to JEDEC board specification (board 1S2P, Cu layer thickness 1 oz , Cu area $650 \mathrm{~mm}^{2}$, no airflow). Detailed description of the board can be found in JESD51-7.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{I N}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}\right.$ and $\mathrm{V}_{\text {IN }} \geq 2.7 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=1.2 \mathrm{~V}$, IOUT $=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}$ (effective capacitance - Note 5), $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, ADJ tied to OUT, unless otherwise specified) (Note 6)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Recommended Input Voltage		$\mathrm{V}_{\text {IN }}$	2.7	-	18	V
Output Voltage Accuracy	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}$	-1	-	1	\%
	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		-1	-	2	
ADJ Reference Voltage	ADJ version only	$\mathrm{V}_{\text {ADJ }}$	-	1.2	-	V
ADJ Input Current	$\mathrm{V}_{\text {ADJ }}=1.2 \mathrm{~V}$	$\mathrm{I}_{\text {ADJ }}$	-0.1	0.01	0.1	$\mu \mathrm{A}$
Line Regulation	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}$ to 18 V and $\mathrm{V}_{\text {IN }} \geq 2.7 \mathrm{~V}$	$\Delta \mathrm{V}_{\text {O(} \Delta \mathrm{VI})}$	-	-	0.2	\% $\mathrm{V}_{\text {OUT }}$
Load Regulation	$\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to 100 mA	$\Delta \mathrm{V}_{\text {O(} \Delta 1 \mathrm{O})}$	-	-	0.4	\% $\mathrm{V}_{\text {OUT }}$
Quiescent Current (version A)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}$ to 18 V , I IOUT $=0 \mathrm{~mA}$	I_{Q}	-	1.3	2.5	$\mu \mathrm{A}$
Quiescent Current (version B)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}$ to 18 V , I IOUT $=0 \mathrm{~mA}$		-	1.8	3.0	
Ground Current	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$	$\mathrm{I}_{\text {GND }}$	-	325	450	$\mu \mathrm{A}$
Shutdown Current (Note 10)	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=18 \mathrm{~V}$	ISHDN	-	0.35	1.5	$\mu \mathrm{A}$
Output Current Limit	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT-NOM }}-100 \mathrm{mV}$	Iolim	140	250	450	mA
Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	losc	140	250	450	mA
Dropout Voltage (Note 7)	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$	V_{DO}	-	215	355	mV

NCV8711

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}\right.$ and $\mathrm{V}_{\text {IN }} \geq 2.7 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=1.2 \mathrm{~V}$, I IOUT $=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}$ (effective capacitance - Note 5), $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, ADJ tied to OUT, unless otherwise specified) (Note 6) (continued)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. Effective capacitance, including the effect of DC bias, tolerance and temperature. See the Application Information section for more information.
6. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.
7. Dropout measured when the output voltage falls 100 mV below the nominal output voltage. Limits are valid for all voltage versions.
8. Startup time is the time from EN assertion to point when output voltage is equal to 95% of $\mathrm{V}_{\text {OUT-NOM }}$.
9. Applicable only to version B (device option with power good output). PG threshold and PG hysteresis are expressed in percentage of nominal output voltage.
10. Shutdown current includes EN Internal Pull-up Current.

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}$ and $\mathrm{V}_{\text {IN }} \geq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}, \mathrm{ADJ}$ tied to OUT, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 6. Output Voltage vs. Temperature

Figure 8. Shutdown Current vs. Temperature

Figure 10. Enable Internal Pull-Up Current vs. Temperature

Figure 7. Quiescent Current vs. Temperature

Figure 9. Enable Threshold Voltage vs. Temperature

Figure 11. ADJ Input Current vs. Temperature

TYPICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT-NOM }}+1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IN}} \geq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{OUT}}=1.0 \mu \mathrm{~F}, \mathrm{ADJ}$ tied to $\mathrm{OUT}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 12. Dropout Voltage vs. Temperature

TYPICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}-\mathrm{NOM}}+1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IN}} \geq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{OUT}}=1.0 \mu \mathrm{~F}, \mathrm{ADJ}$ tied to $\mathrm{OUT}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 13. PSRR - FIX-3.3 V, Cout $=1 \mu \mathrm{~F}$, $I_{\text {OUT }}=100 \mathrm{~mA}$

Figure 15. PSRR - FIX-3.3 V, $\mathrm{V}_{\mathrm{IN}}=8.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=$ 100 mA

Figure 17. Noise - ADJ-set-5.0 V with Different C $_{\text {FF }}$ and FIX - 5.0 V

Figure 14. $\mathrm{PSRR}-$ FIX-3.3 $\mathrm{V}, \mathrm{V}_{\mathrm{IN}}=4.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=$ 100 mA

Figure 16. Noise - FIX - 5.0 V , $\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$,
Different $\mathrm{C}_{\text {OUT }}$

Figure 18. Noise - FIX, I IOUT = 10 mA , $C_{\text {OUT }}=1 \mu \mathrm{~F}$, Different $\mathrm{V}_{\text {OUT }}$

ORDERING INFORMATION

Part Number	Marking	Voltage Option (Vout-nom)	Version	Package	Shipping
NCV8711ASNADJT1G	GGA	ADJ	Without PG	TSOP-5 (Pb-Free)	3000 / Tape \& Reel
NCV8711ASN300T1G	GGC	3.0 V			
NCV8711ASN330T1G	GGD	3.3 V			
NCV8711ASN500T1G	GGE	5.0 V			
NCV8711BMTWADJTBG	GA	ADJ	With PG	WDFNW6 (Pb-Free)	3000 / Tape \& Reel
NCV8711BMTW300TBG	GC	3.0 V			
NCV8711BMTW330TBG	GD	3.3 V			
NCV8711BMTW500TBG	GE	5.0 V			

NOTE: To order other package, voltage version or PG / non PG variant, please contact your ON Semiconductor sales representative.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

WDFNW6 2x2, 0.65P
CASE 511DW
ISSUE B
DATE 15 JUN 2018
SCALE 4:1

NDTES:

1. Dimensianing and talerancing per ASME Y14.5M, 1994.
2. CINTRILLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TQ PLATED terminals and is measured between 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. This device cantains wettable flank design features to aid in fillet formation an the leads during maunting.

DIM	MILLIMETERS				
	MIN.	NLM.	MAX.		
A	0.70	0.75	0.80		
A1	---	---	0.05		
A3	0.20 REF				
A4	0.10	----	---		
b	0.25	0.30	0.35		
D	1.90	2.00	2.10		
D2	1.50	1.60	1.70		
E	1.90	2.00	2.10		
E2	0.80	0.90	1.00		
e	0.65 BSC				
K	0.25 REF				
L	0.25	0.30			0.35
L3	0.05 REF				

```
GENERIC
MARKING DIAGRAM*
```



```
M = Month Code
- = Pb-Free Package
```

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\boldsymbol{\mathrm { * }}$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON79327G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFNW6 2x2, 0.65P | PAGE 1 OF 1 |

ON Semiconductor and (01) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LDO Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G NCP715MX30TBG NCV8702MX25TCG TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1 NCV8170BMX300TCG NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 NCP154MX180300TAG AP2113AMTR-G1 NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S-19214B00A-V5T2U7 S-19214B50A-V5T2U7 S-19213B50A-V5T2U7 S-19214BC0A-E8T1U7*1 S-19213B00A-V5T2U7 S-19213B33A-V5T2U7 S-19213BC0A-V5T2U7

