N-Channel Power MOSFET 600 V, 3.6 Ω

Features

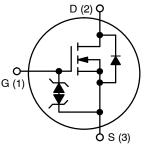
- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF	NDD	Unit
Drain-to-Source Voltage	V_{DSS}	600		٧
Continuous Drain Current R _{θJC}	I _D	3.1 (Note 1)	2.6	Α
Continuous Drain Current $R_{\theta JC}$ $T_A = 100^{\circ}C$	I _D	2.9 (Note 1)	1.65	Α
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	12	10	Α
Power Dissipation $R_{\theta JC}$	P_{D}	27	61	W
Gate-to-Source Voltage	V _{GS}	±30)	V
Single Pulse Avalanche Energy, I _D = 3.0 A	E _{AS}	100 3000		mJ
ESD (HBM) (JESD 22-A114)	V _{esd}			V
RMS Isolation Voltage (t = 0.3 sec., R.H. ≤ 30%, T _A = 25°C) (Figure 17)	V _{ISO}	4500		٧
Peak Diode Recovery (Note 2)	dv/dt	4.5	l	V/ns
Continuous Source Current (Body Diode)	I _S	3.0 260 -55 to 150		Α
Maximum Temperature for Soldering Leads	TL			°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}			°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Limited by maximum junction temperature
- 2. $I_{SD} = 3.0 \text{ A}$, di/dt $\leq 100 \text{ A/}\mu\text{s}$, $V_{DD} \leq BV_{DSS}$, $T_{J} = +150^{\circ}\text{C}$



ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(on)} (MAX) @ 1.2 A
600 V	3.6 Ω

N-Channel

NDF03N60ZG, NDF03N60ZH TO-220FP CASE 221AH

NDD03N60Z-1G IPAK CASE 369D

NDD03N60ZT4G DPAK CASE 369AA

MARKING AND ORDERING INFORMATION

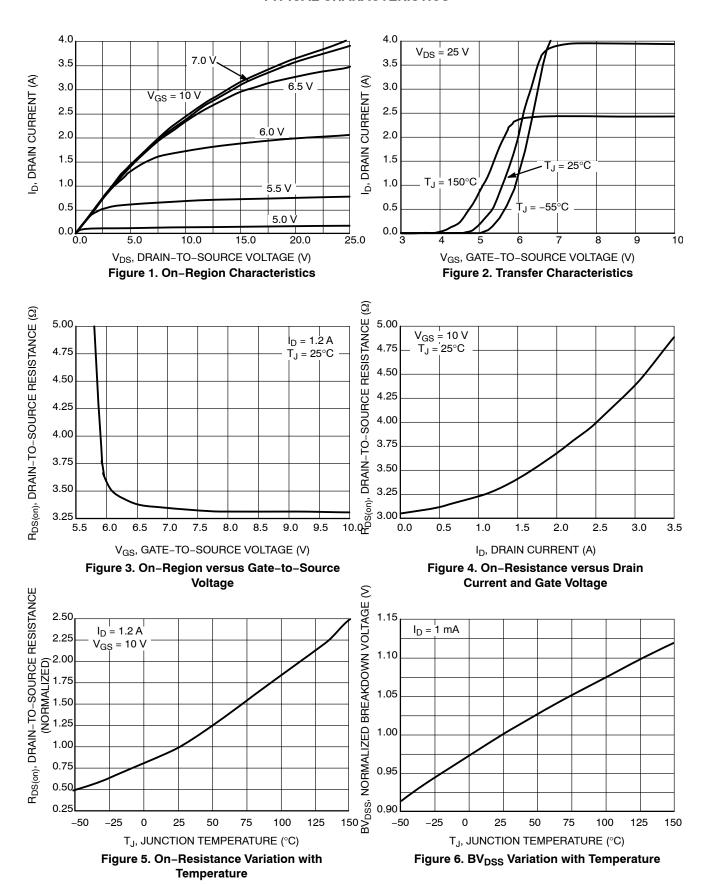
See detailed ordering and shipping information on page 7 of this data sheet.

THERMAL RESISTANCE

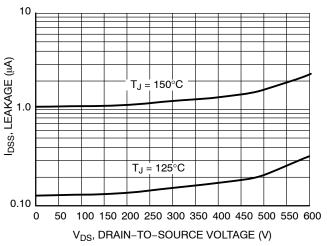
Parameter		Symbol	Value	Unit
Junction-to-Case (Drain)	NDF03N60Z NDD03N60Z	$R_{ heta JC}$	4.7 2.0	°C/W
Junction-to-Ambient Steady State	(Note 3) NDF03N60Z (Note 4) NDD03N60Z (Note 3) NDD03N60Z-1	$R_{ hetaJA}$	51 40 80	

^{3.} Insertion mounted

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

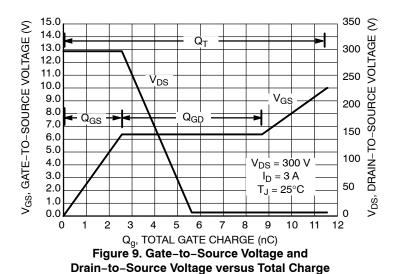

Characteristic	Test Conditions		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	-
Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA		BV _{DSS}	600			V
Breakdown Voltage Temperature Co- efficient	Reference to 25°C, $I_D = 1 \text{ mA}$		$\Delta BV_{DSS}/ \Delta T_{J}$		0.6		V/°C
Drain-to-Source Leakage Current	V _{DS} = 600 V, V _{GS} = 0 V	25°C 150°C	I _{DSS}			1 50	μΑ
Gate-to-Source Forward Leakage	V _{GS} = ±20 V	<u> </u>	I _{GSS}			±10	μА
ON CHARACTERISTICS (Note 5)							
Static Drain-to-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 1.2 \text{ A}$	A	R _{DS(on)}		3.3	3.6	Ω
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 50 μ	4	V _{GS(th)}	3.0	3.9	4.5	V
Forward Transconductance	V _{DS} = 15 V, I _D = 1.5 A	A	9FS		2.0		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 6)	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		C _{iss}	248	312	372	pF
Output Capacitance (Note 6)			C _{oss}	30	39	50	
Reverse Transfer Capacitance (Note 6)			C _{rss}	4	8	12	
Total Gate Charge (Note 6)			Qg	6	12	18	nC
Gate-to-Source Charge (Note 6)			Q_{gs}	1.5	2.5	4	
Gate-to-Drain ("Miller") Charge (Note 6)	$V_{DD} = 300 \text{ V}, I_D = 3.0 \text{ V}$ $V_{GS} = 10 \text{ V}$	А,	Q_{gd}	3	6.1	9	
Plateau Voltage			V _{GP}		6.4		V
Gate Resistance			Rg		6.0		Ω
RESISTIVE SWITCHING CHARACTERI	STICS						
Turn-On Delay Time			t _{d(on)}		9		ns
Rise Time	V _{DD} = 300 V, I _D = 3.0 A	Α,	t _r		8		
Turn-Off Delay Time	$V_{DD} = 300 \text{ V}, I_D = 3.0 \text{ A}$ $V_{GS} = 10 \text{ V}, R_G = 5 \text{ C}$	2	t _{d(off)}		16		
Fall Time			t _f		10		
SOURCE-DRAIN DIODE CHARACTER	ISTICS (T _C = 25°C unless oth	erwise note	ed)				
Diode Forward Voltage	I _S = 3.0 A, V _{GS} = 0 V	′	V_{SD}			1.6	V
Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 30 V	/	t _{rr}		265		ns
Reverse Recovery Charge	$I_S = 3.0 \text{ A}, \text{ di/dt} = 100 \text{ A}$	/μs	Q _{rr}		0.9		μС

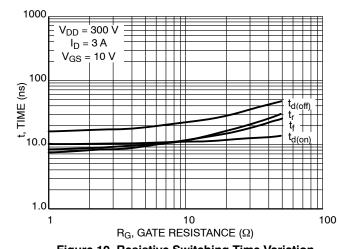
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


^{4.} Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).

^{5.} Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%.
6. Guaranteed by design.

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS



700 $T_{J}^{1} = 25^{\circ}C$ 650 $V_{GS} = 0 V$ f = 1 MHz 600 550 CAPACITANCE (pF) 500 450 400 350 C_{iss} 300 250 200 Ú 150 100 Coss 50 0 0 5 15 20 25 30 35 40 45 50 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Drain-to-Source Leakage Current versus Voltage

Figure 8. Capacitance Variation

10.0 (V) T_J = 150°C 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1... V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 10. Resistive Switching Time Variation versus Gate Resistance

Figure 11. Diode Forward Voltage versus Current

TYPICAL CHARACTERISTICS

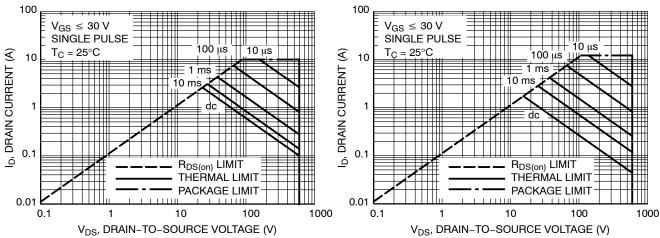


Figure 12. Maximum Rated Forward Biased Safe Operating Area NDD03N60Z

Figure 13. Maximum Rated Forward Biased Safe Operating Area NDF03N60Z

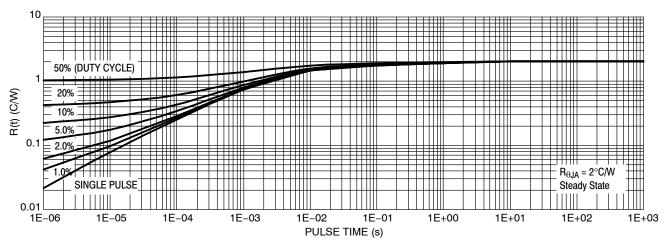


Figure 14. Thermal Impedance (Junction-to-Case) for NDD03N60Z

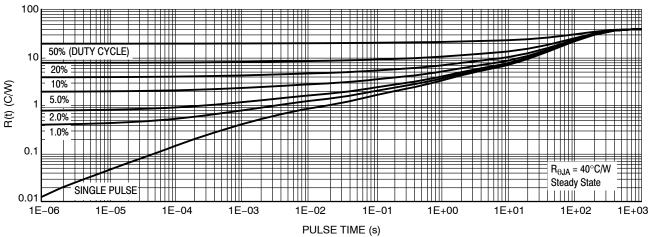


Figure 15. Thermal Impedance (Junction-to-Ambient) for NDD03N60Z

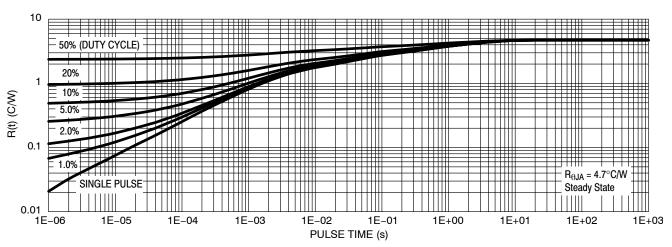


Figure 16. Thermal Impedance (Junction-to-Case) for NDF03N60Z

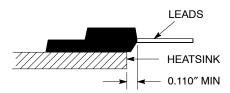
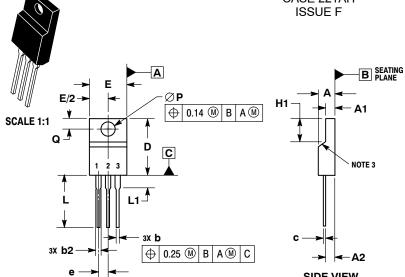
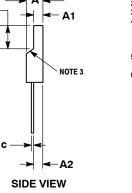
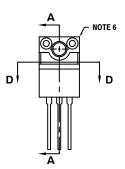


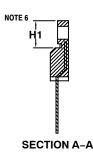
Figure 17. Isolation Test Diagram


Measurement made between leads and heatsink with all leads shorted together.

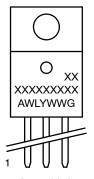

*For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ISSUE F


DATE 30 SEP 2014



FRONT VIEW


ALTERNATE CONSTRUCTION

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR UNCONTROLLED IN THIS AREA.
- CONTOUR ONCOUNT HOLLED IN THIS AREA.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.
 DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION.
 LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.
- CONTOURS AND FEATURES OF THE MOLDED PACKAGE BODY MAY VARY WITHIN THE ENVELOP DEFINED BY DIMENSIONS AT AND H1 FOR MANUFACTURING PURPOSES.

THE THE COLUMN WOLLD					
	MILLIMETERS				
DIM	MIN	MAX			
Α	4.30	4.70			
A1	2.50	2.90			
A2	2.50	2.90			
b	0.54	0.84			
b2	1.10	1.40			
С	0.49	0.79			
D	14.70	15.30			
E	9.70	10.30			
е	2.54	BSC			
H1	6.60	7.10			
L	12.50	14.73			
L1		2.80			
P	3.00	3.40			
Q	2.80	3.20			

GENERIC MARKING DIAGRAM*

= Assembly Location

WL = Wafer Lot

= Year

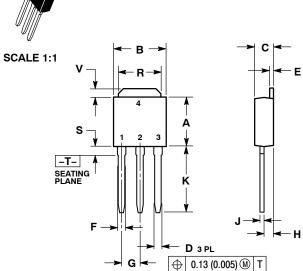
WW = Work Week

G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:		STYLE 2:	
PIN 1.	MAIN TERMINAL 1	PIN 1.	CATHODE
2.	MAIN TERMINAL 2	2.	ANODE
3.	GATE	3.	GATE

DOCUMENT NUMBER:	98AON52577E	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220 FULLPACK, 3-LEA	AD	PAGE 1 OF 1


ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

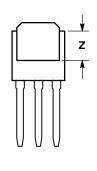
MT2

SOURCE

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

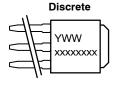
MARKING DIAGRAMS

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE

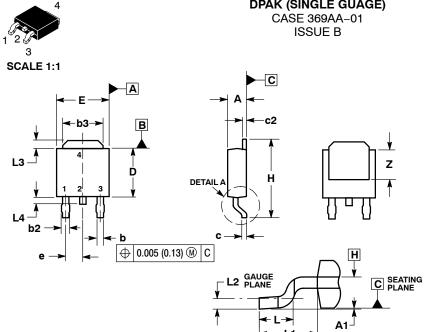

STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER

COLLECTOR

STYLE 4: PIN 1. CATHODE ANODE
 GATE

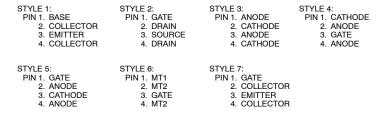
4. ANODE



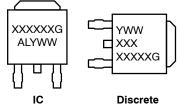
xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year WW = Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	IPAK (DPAK INSERTION M	IOUNT)	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

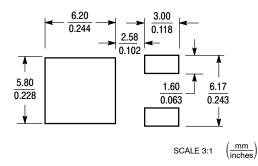


DETAIL A ROTATED 90° CW **DATE 03 JUN 2010**


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	


GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B