Intelligent Power Module (IPM) 650 V, 20 A

NFAM2065L4BT

General Description

The NFAM2065L4BT is a fully-integrated inverter power module consisting of an independent High side gate driver, LVIC, six IGBT's and a temperature sensor (VTS or Thermistor(T)), suitable for driving permanent magnet synchronous (PMSM) motors, brushless DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a three-phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm.

The power stage has under-voltage lockout protection (UVP). Internal boost diodes are provided for high side gate boost drive.

Features

- Three–phase 650 V, 20 A IGBT Module with Independent Drivers
- Active Logic Interface
- Built-in Under-voltage Protection (UVP)
- Integrated Bootstrap Diodes and Resistors
- Separate Low-side IGBT Emitter Connections for Individual Current Sensing of Each Phase
- Temperature Sensor (VTS or Thermistor (T))
- UL1557 Certified (File No.E339285)
- This is a Pb-Free Device

Typical Application

- Industrial Drives
- Industrial Pumps
- Industrial Fans
- Industrial Automation

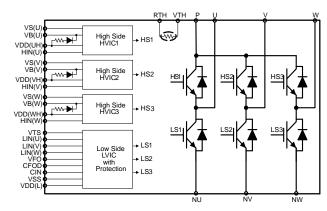
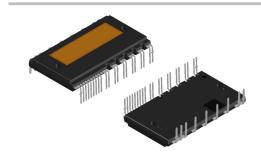



Figure 1. Application Schematic

ON Semiconductor®

www.onsemi.com

DIP39 54.5 x 31.0 CASE MODGC

MARKING DIAGRAM

O NFAM2065L4BT O ZZZATYWW

Device marking is on package top side

NFAM2065L4BT = Specific Device Code
ZZZ = Assembly Lot Code
A = Assembly Location
T = Test Location
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
NFAM2065L4BT	DIP39, 31.0x54.5 (Pb-Free)	90 / BOX

APPLICATION SCHEMATIC

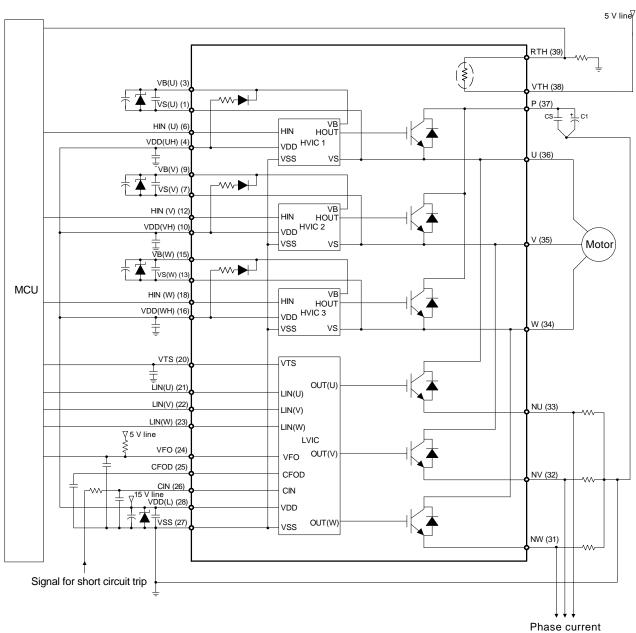


Figure 2. Application Schematic - Adjustable Option

BLOCK DIAGRAM

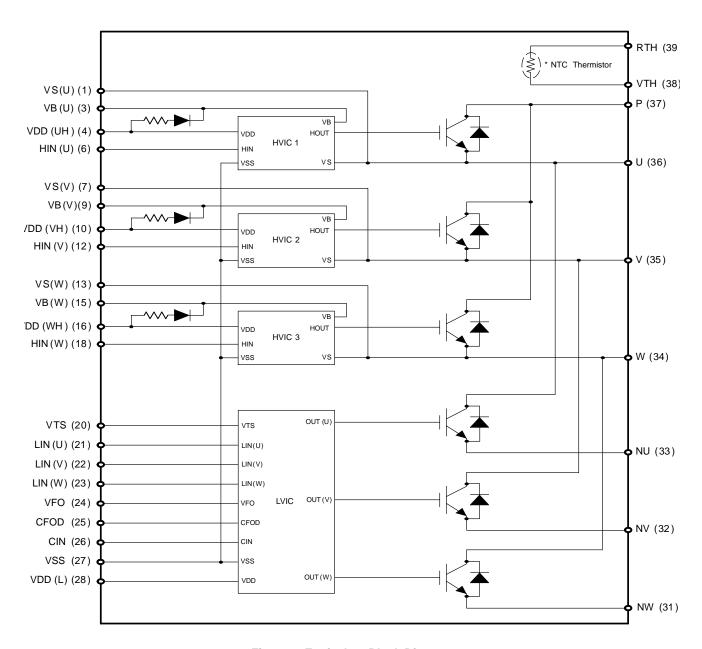


Figure 3. Equivalent Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	VS(U)	High-Side Bias Voltage GND for U Phase IGBT Driving
(2)	-	Dummy
3	VB(U)	High-Side Bias Voltage for U Phase IGBT Driving
4	VDD(UH)	High-Side Bias Voltage for U Phase IC
(5)	-	Dummy
6	HIN(U)	Signal Input for High-Side U Phase
7	VS(V)	High-Side Bias Voltage GND for V Phase IGBT Driving
(8)	-	Dummy
9	VB(V)	High-Side Bias Voltage for V Phase IGBT Driving
10	VDD(VH)	High-Side Bias Voltage for V Phase IC
(11)	-	Dummy
12	HIN(V)	Signal Input for High–Side V Phase
13	VS(W)	High-Side Bias Voltage GND for W Phase IGBT Driving
(14)	-	Dummy
15	VB(W)	High-Side Bias Voltage for W Phase IGBT Driving
16	VDD(WH)	High-Side Bias Voltage for W Phase IC
(17)	-	Dummy
18	HIN(W)	Signal Input for High–Side W Phase
(19)	-	Dummy
20	VTS	Voltage Output for LVIC Temperature Sensing Unit
21	LIN(U)	Signal Input for Low–Side U Phase
22	LIN(V)	Signal Input for Low–Side V Phase
23	LIN(W)	Signal Input for Low–Side W Phase
24	VFO	Fault Output
25	CFOD	Capacitor for Fault Output Duration Selection
26	CIN	Input for Current Protection
27	VSS	Low-Side Common Supply Ground
28	VDD(L)	Low-Side Bias Voltage for IC and IGBTs Driving
(29)	-	Dummy
(30)	-	Dummy
31	NW	Negative DC-Link Input for U Phase
32	NV	Negative DC-Link Input for V Phase
33	NU	Negative DC-Link Input for W Phase
34	W	Output for U Phase
35	V	Output for V Phase
36	U	Output for W Phase
37	Р	Positive DC-Link Input
38	VTH	Thermistor Bias Voltage (T) / Not connection
39	RTH	Series Resister for Thermistor (Temperature Detection) *optional for T

^{1.} Pins of () are the dummy for internal connection. These pins should be no connection.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C) (Note 2)

Rating	Symbol	Conditions	Value	Unit
Supply Voltage	VPN	P – NU, NV, NW	450	V
Supply Voltage (Surge)	VPN(Surge)	P – NU, NV, NW, (Note 3)	550	V
Self Protection Supply Voltage Limit (Short–Circuit Protection Capability)	VPN(PROT)	VDD = VBS = 13.5 V ~ 16.5 V, Tj = 150°C, Vces < 650 V, Non–Repetitive, < 2 us	400	V
Collector–Emitter Voltage	Vces		650	V
Maximum Repetitive Revers Voltage	VRRM		650	V
Each IGBT Collector Current	±lc		±20	Α
Each IGBT Collector Current (Peak)	±lcp	Under 1 ms Pulse Width	±40	Α
Control Supply Voltage	VDD	VDD(UH,VH,WH), VDD(L) – VSS	-0.3 to 20	V
High-Side Control Bias Voltage	VBS	VB(U) - VS(U), VB(V) - VS(V), VB(W) - VS(W)	-0.3 to 20	V
Input Signal Voltage	VIN	HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W) – VSS	-0.3 to VDD	V
Fault Output Supply Voltage	VFO	VFO – VSS	-0.3 to VDD	V
Fault Output Current	IFO	Sink Current at VFO pin	2	mA
Current Sensing Input Voltage	VCIN	CIN - VSS	-0.3 to VDD	V
Corrector Dissipation	Pc	Per One Chip	96	W
Operating Junction Temperature	Tj		-40 to +150	°C
Storage Temperature	Tstg		-40 to +125	°C
Module Case Operation Temperature	Tc		-40 to +125	°C
Isolation Voltage	Viso	60 Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat Sink Plate	2500	V rms

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Rating	Symbol	Conditions	Min	Тур	Max	Unit
Junction to Case Thermal	Rth(j-c)Q	Inverter IGBT Part (per 1/6 Module)	-	-	1.3	°C/W
Resistance	Rth(j-c)F	Inverter FWDi Part (per 1/6 Module)	_	_	2.4	°C/W

^{4.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

RECOMMENDED OPERATING RANGES (Note 5)

Rating	Symbol	Conditions	Conditions		Тур	Max	Unit
Supply Voltage	VPN	P – NU, NV, NW		-	300	400	V
Gate Driver Supply Voltages	VDD	VDD(UH,VH,WH), VDD(L) – VSS	13.5	15	16.5	V
	VBS	VB(U) - VS(U), VB(V) - VS(V), VB(W) - VS(W)		13.0	15	18.5	V
Supply Voltage Variation	dVDD / dt dVBS / dt			-1	-	1	V/μs
PWM Frequency	fPWM			1		20	kHz
Dead Time	DT	Turn-off to Turn-on (exter	Turn-off to Turn-on (external)		_	-	μS
Allowable r.m.s. Current	lo	VPN = 300 V, VDD = VD = 15 V,	fPWM = 5 kHz	-	-	20.5	A rms
	P.F. = 0.8, Tc ≤ 125°C, Tj ≤ 150°C, (Note 5)	fPWM = 15 kHz	1	-	15.4		

Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

^{3.} This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.

RECOMMENDED OPERATING RANGES (Note 5) (continued)

Rating	Symbol	Conditions	Min	Тур	Max	Unit
Allowable Input Pulse Width	PWIN (on)	200 V ≤ VPN ≤ 400 V, 13.5 V ≤ VDD ≤ 16.5 V,	1.0	-	-	μS
	PWIN (off)	13.0 V ≤ VBS ≤ 18.5 V, -20°C ≤ Tc ≤ 100°C	1.5	-	-	
Package Mounting Torque		M3 Type Screw	0.6	0.7	0.9	Nm

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Allowable r.m.s Current depends on the actual conditions.

- 6. Flatness tolerance of the heatsink should be within –50 μ m to +100 μ m.

ELECTRICAL CHARACTERISTICS (Tc = 25°C, VDD = 15 V, VBS = 15 V, unless otherwise noted) (Note 7)

Pa	arameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
INVERTER S	SECTION			•	_	_	_	•
	nitter Leakage	Vce = Vces, Tj = 25°C		Ices	_	_	1	mA
Current		Vce = Vces, Tj = 150°C			_	-	10	mA
Collector-Em Voltage	nitter Saturation	VDD = VBS = 15 V, IN = 5 V Ic = 20 A, Tj = 25°C		VCE(sat)	-	1.60	2.30	V
		VDD = VBS = 15 V, IN = 5 V Ic = 20 A, Tj = 150°C			-	1.80	-	V
FWDi Forwar	d Voltage	IN = 0 V, If = 20 A, Tj = 25°C		VF	-	1.90	2.30	V
		IN = 0 V, If = 20 A, Tj = 150°C		1	_	1.90	-	V
High Side	Switching Times	VPN = 300 V, VDD(H) = VDD(L) =	15 V	ton	0.80	1.30	1.90	μS
		Ic = 20 A, Tj = 25°C, \dot{IN} = 0 \Leftrightarrow 5 V Inductive Load		tc (on)	-	0.20	0.60	μS
				toff	-	1.40	2.00	μS
				tc (off)	-	0.20	0.70	μS
			trr	-	0.15	-	μS	
Low Side	Switching Times	VPN = 300 V, VDD(H) = VDD(L) =	ton	0.80	1.40	2.00	μS	
		Ic = 20 A, Tj = 25°C, IN = 0 ⇔ 5 V Inductive Load	Ic = 20 A, Tj = 25 $^{\circ}$ C, IN = 0 \Leftrightarrow 5 V Inductive Load		-	0.20	0.60	μS
				toff	_	1.50	2.10	μS
				tc (off)	_	0.20	0.70	μs
			trr	_	0.15	-	μs	
DRIVER SEC	CTION	•		•				
Quiescent VDD Supply Current		VDD(UH,VH,WH) = 15 V, HIN(U,V,W) = 0 V	VDD(UH) – VSS VDD(VH) – VSS VDD(WH) – VSS	IQDDH	-	-	0.30	mA
		VDD(L) = 15 V, LIN(U, V, W) = 0 V	VDD(L) – VSS	IQDDL	-	-	3.50	mA
Operating VDD Supply Current		VDD(UH, VH, WH) = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High–Side	fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input VDD(VH) – VSS		-	-	0.40	mA
		VDD(L) = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for Low–Side	VDD(L) - VSS	IPDDL	-	-	6.00	mA
Quiescent VBS Supply Current		VB(U) - VS(U) VB(V) - VS(V) VB(W) - VS(W)	IQBS	-	-	0.30	mA	

ELECTRICAL CHARACTERISTICS (Tc = 25°C, VDD = 15 V, VBS = 15 V, unless otherwise noted) (Note 7) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
DRIVER SECTION			•		•	•	
Operating VBS Supply Current	VDD = VBS = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High-Side	VB(U) - VS(U) VB(V) - VS(V) VB(W) - VS(W)	IPBS	-	-	5.00	mA
ON Threshold Voltage	HIN(U, V, W) – VSS, LIN(U, V, W)	– VSS	VIN(ON)	-	_	2.6	V
OFF Threshold Voltage			VIN(OF)	0.8	-	_	V
Short Circuit Trip Level	VDD = 15 V, CIN-VSS	VDD = 15 V, CIN-VSS		0.46	0.48	0.50	V
Supply Circuit Under-Voltage	Detection Level		UVDDD	10.3	-	12.5	V
Protection	Reset Level		UVDDR	10.8	_	13.0	V
	Detection Level		UVBSD	10.0	-	12.0	V
	Reset Level	UVBSR	10.5	_	12.5	V	
Voltage Output for LVIC Temperature Sensing Unit	VTS-VSS = 10 nF, Temp. = 25°C	VTS-VSS = 10 nF, Temp. = 25°C		0.905	1.030	1.155	V
Fault Output Voltage	It Output Voltage $ VDD = 0 \text{ V, CIN} = 0 \text{ V,} $ $ VFO \text{ Circuit: } 10 \text{ k}\Omega \text{ to 5 V Pull-up} $		VFOH	4.9	-	-	V
	VDD = 0 V, CIN = 1 V, VFO Circuit: 10 kΩ to 5 V Pull–up		VFOL	-	_	0.95	V
Fault-Output Pulse Width	CFOD = 22 nF		tFOD	1.6	2.4	_	ms
BOOTSTRAP SECTION							
Bootstrap Diode Forward Voltage	If = 0.1 A		VF	3.4	4.6	5.8	V
Built-in Limiting Resistance			RBOOT	30	38	46	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 7. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
- 8. The fault—out pulse width tFOD depends on the capacitance value of CFOD according to the following approximate equation: tFOD = 0.1 x 10⁶ x CFOD (s).
- 9. Values based on design and/or characterization.

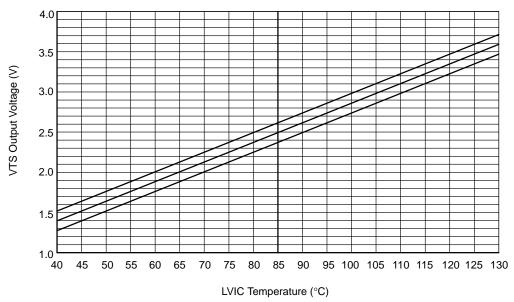


Figure 4. Temperature of LVIC versus VOT Characteristics

THERMISTOR CHARACTERISTIC

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resistance	R ₂₅	Tc = 25°C	46.530	47	47.47	kΩ
Resistance	R ₁₂₅	Tc = 100°C	1.344	1.406	1.471	kΩ
B-Constant (25-50°C)	-	В	4009.5	4050	4090.5	K
Temperature Range	1	-	-40	1	+125	°C

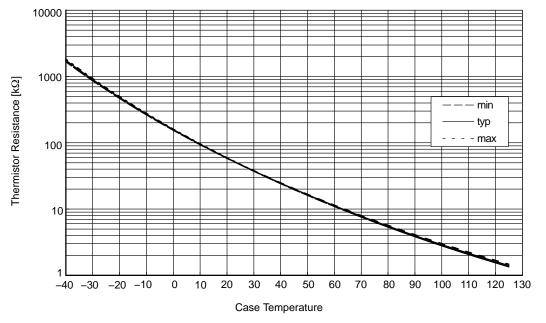
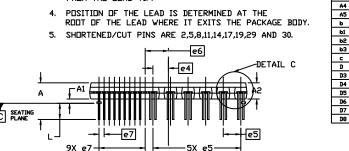


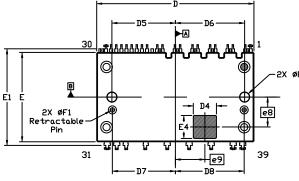
Figure 5. Thermistor Resistance versus Case Temperature

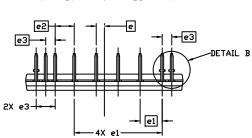

MINI DIP39, 31.0x54.5 **CASE MODGC ISSUE A**

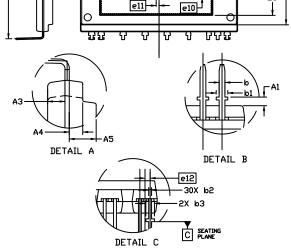
DATE 19 MAR 2019

E2 **E3**

NOTES


- DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- ASML Y14.3M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSION to and c APPLY TO THE PLATED LEADS
 AND ARE MEASURED BETWEEN 1.00 AND 2.00
 FROM THE LEAD TIP.




A 1220 12.7 13. A1 1.00 1.50 2.0 A2 5.50 5.60 5.7 A3 2.00 REF A4 1.55 REF A5 3.10 REF b 0.90 1.00 1.1 b1 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 REF c 0.50 REF		MILLIMETERS			
A1 1.00 1.50 2.0 A2 5.50 5.60 5.7 A3 2.00 REF A4 1.55 REF A5 3.10 REF b 0.90 1.00 1.11 b1 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54.40 D3 33.25 REF D4 8.00 REF	DIM	MIN.	NDM.	MAX.	
A2 5.50 5.60 5.7 A3 2.00 REF A4 1.55 REF B 0.90 1.00 1.1 B1 1.90 2.00 2.1 B2 0.40 0.50 0.6 B3 1.40 1.50 1.6 C 0.50 REF D 54.40 54.50 54.6 B3 39.25 REF D 3 39.25 REF D 8.00 REF	A	12.20	12.7	13.2	
A3 2.00 REF A4 1.55 REF A5 3.10 REF b 0.90 1.00 1.1 b1 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54.4 D3 39.25 REF D4 0.00 REF	A1	1.00	1.50	2.00	
A4 1.55 REF A5 3.10 REF b 0.90 1.00 1.11 bit 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54.40 D3 39.25 REF D4 8.00 REF	A2	5.50	5.60	5.70	
A5 3.10 REF b 0.90 1.00 1.11 b1 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.0 54.0 54.0 D3 39.25 REF D4 8.00 REF	A3		2.00 REF		
b 0.90 1.00 1.1 bi 1.90 2.00 2.1 bi 2 0.40 0.50 0.6 bi 3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54. Di 39.25 REF D4 8.00 REF	A4		1.55 REF	•	
b1 1.90 2.00 2.1 b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54.4 D3 39.25 REF D4 8.00 REF	A5		3.10 REF		
b2 0.40 0.50 0.6 b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 \$4.4 B3 39.25 REF D4 8.00 REF	ь	0.90	1.00	1.10	
b3 1.40 1.50 1.6 c 0.50 REF D 54.40 54.50 54.4 D3 39.25 REF D4 8.00 REF	lo1	1.90	2.00	2.10	
C 0.50 REF D 54.40 54.50 54.6 D3 39.25 REF D4 8.00 REF	b2	0.40	0.50	0.60	
D 54.40 54.50 54.6 D3 39.25 REF D4 8.00 REF	b3	1.40	1.50	1.60	
D3 39.25 REF D4 8.00 REF	c		0.50 REF		
D4 8.00 REF	D	54.40	54.50	54.60	
	D3		9.25 RE	F	
D5 22.00 REF	D4		8.00 REF	•	
	D5		22.00 RE	F	
D6 24.00 REF	D6	24.00 REF			
D7 21.85 REF	D7	í	21.85 RE	F	
D8 23.85 REF	D8	- E	3.85 RE	F	

DETAIL A

	MILLIMETERS					
DIM	MIN.	NDM.	MAX.			
Ε	30.90	31.00	31.10			
E1		3.50 RE	F			
E2	ű	26.14 REI	-1			
E3	1	2.35 REI	F			
E4		8.00 REF				
E5	35.40	35.90	36.40			
e		2.81 REF				
e1	7.62 BSC					
e2	6.60 BSC					
e3	3.30 BSC					
e4	5.35 REF					
e5	6.10 BSC					
e6		8.02 REF				
e7		1.78 BSC	:			
e8	_	0.35 REI				
e9		10.25 REF				
e10	3.60 REF					
e11	1.00 REF					
e12	0.89 BSC					
F	3.20	3.30	3.40			
F1	1.40	1.50	1.60			
L		5.60 REF				

GENERIC MARKING DIAGRAM*

XXXXXXXXXXXXXXXXX **ZZZATYWW**

XXXXX = Specific Device Code

= Assembly Lot Code

ΑT = Assembly & Test Location = Year = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON91300G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	MINI DIP39, 31.0x54.5		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

\/\/\/

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS50R07N2E4_B11 FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D DF200R12PT4_B6 DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11 F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF1200R17KP4_B2 FF150R12ME3G FF300R17KE3_S4 FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV STGIF7CH60TS-L FP50R07N2E4_B11 FS100R07PE4 FS150R07N3E4_B11 FS150R17N3E4