NFCS1060L3TT

2-in-1 PFC and Inverter Intelligent Power Module (IPM), $600 \mathrm{~V}, 10 \mathrm{~A}$

The NFCS1060L3TT is a fully-integrated PFC and inverter power stage consisting of a high-voltage driver, six motor drive IGBT's, one PFC SJ-MOSFET, one PFC SiC-SBD for rectifier and a thermistor, suitable for driving permanent magnet synchronous (PMSM) motors, brushless-DC (BLDC) motors and AC asynchronous motors.

The IGBT's are configured in a 3 -phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm.

An internal comparator and reference connected to the over-current protection circuit allows the designer to set individual over-current protection levels for the PFC and the inverter stages. Additionally, the power stage has a full range of protection functions including cross-conduction protection, external shutdown and under-voltage lockout functions.

Features

- Simple Thermal Design with PFC and Inverter Stage in One Package
- Cross-Conduction Protection
- Integrated Bootstrap Diodes and Resistors
- UL1557 Certification (File Number: E339285)

Typical Applications

- Heat Pumps
- Home Appliances
- Industrial Fans
- Industrial Pumps

Figure 1. Function Diagram

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

SIP35 56x25.8 / SIP2A-2 CASE 127DT

MARKING DIAGRAM

NFCS1060L3TT	$=$ Specific Device Code
ZZZ	$=$ Assembly Lot Code
A	$=$ Assembly Location
T	$=$ Test Location
Y	$=$ Year
WW	Work Week
Device marking is on package top side	

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
NFCS1060L3TT	SIP35 56x25.8 / SIP2A-2 (Pb-Free)	$8 /$ Tube

NFCS1060L3TT

Figure 2. Application Schematic - Adjustable Option

Figure 3. Equivalent Block Diagram

NFCS1060L3TT

Table 1. PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	X	X Phase MOSFET Drain for PFC Inductor Connection
4	VB(W)	High-Side Bias Voltage for W Phase IGBT Driving
5	W	Output for W Phase and High-Side Bias Voltage GND for W Phase IGBT Driving
8	VB(V)	High-Side Bias Voltage for V Phase IGBT Driving
9	V	Output for V Phase and High-Side Bias Voltage GND for V Phase IGBT Driving
12	VB(U)	High-Side Bias Voltage for U Phase IGBT Driving
13	U	Output for U Phase and High-Side Bias Voltage GND for U Phase IGBT Driving
16	P	Positive DC-Link Input / Positive PFC Output Voltage
19	NX	X Phase MOSFET Source for PFC
20	NW	Negative DC-Link Input for W Phase
21	NV	Negative DC-Link Input for V Phase
22	NU	Negative DC-Link Input for U Phase
23	HIN(U)	Signal Input for High-Side U Phase
24	HIN(V)	Signal Input for High-Side V Phase
25	HIN(W)	Signal Input for High-Side W Phase
26	$\operatorname{LIN}(\mathrm{U})$	Signal Input for Low-Side U Phase
27	LIN(V)	Signal Input for Low-Side V Phase
28	$\operatorname{LIN}(\mathrm{W})$	Signal Input for Low-Side W Phase
29	$\mathrm{IN}(\mathrm{X})$	Signal Input for PFC X Phase
30	FLTEN	Fault Output / Enable
31	ITRIP(P)	Input for Current Protection for PFC
32	ITRIP(I)	Input for Current Protection for Inverter
33	TH	Thermistor Bias Voltage
34	VDD	Low-Side Bias Voltage for IC and IGBTs Driving
35	VSS	Low-Side Common Supply Ground

NOTE: Pins 2, 3, 6, 7, 10, 11, 14, 15, 17 and 18 are not present.

NFCS1060L3TT

Table 2. ABSOLUTE MAXIMUM RATINGS (Note 1)
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Rating		Symbol	Conditions	Value	Unit
PFC Section					
PFC MOSFET	Drain-Source Voltage	VDSS	X-NX	600	V
	Drain Current (peak)	IDP	Pulse Width < 100 ms , VBS, VDD $=15 \mathrm{~V}$	30	A
	Drain Current	ID	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	20	A
			$\mathrm{Tc}=10{ }^{\circ} \mathrm{C}$	10	A
	Power Dissipation	PD1		83	W
PFC Diode	Repetitive Reverse Voltage	VRRM	P - X	600	V
	Forward Current (peak)	IFP	Pulse Width < 100 ms	30	A
	Forward Current	IF	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	20	A
			$\mathrm{Tc}=10{ }^{\circ} \mathrm{C}$	10	A
	Power Dissipation	PD2		32	W
MOSFET Body Diode	Forward Current	ISD	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	10	A
Maximum AC Input Voltage		VAC	Single-Phase Full-Rectified	277	Vrms
Maximum Output Voltage		Vo	In the Application Circuit (VAC = 200 V)	450	V
Input AC Current (steady state)		lin		10	Arms

Inverter Section

Supply Voltage	VPN	P - NU, NV, NW surge < 500 V (Note 2)	450	V
Collector-Emitter Voltage	VCES	P - U, V, W or U-NU, V - NV, W-NW	600	V
Each IGBT Collector Current	IC	P, U, V, W, NU, NV, NW Terminal Current	± 10	A
		P, U, V, W, NU, NV, NW Terminal Current at $\mathrm{Tc}=100^{\circ} \mathrm{C}$	± 5	A
Each IGBT Collector Current (peak)	ICP	P, U, V, W, NU, NV, NW Terminal Current, Pulse Width 1 ms	± 20	A
Corrector Dissipation	PC	IGBT per one chip	29	W

Driver Section

High-Side Control Bias Voltage	VBS	VB(U) $-\mathrm{U}, \mathrm{VB}(\mathrm{V})-\mathrm{V}, \mathrm{VB}(\mathrm{W})-\mathrm{W}$,	-0.3 to +20.0	V
Control Supply Voltage	VDD	VDD -VSS	-0.3 to +20.0	V
Input Signal Voltage	VIN	$\mathrm{HIN}(\mathrm{U}), \operatorname{HIN}(\mathrm{V}), \operatorname{HIN}(\mathrm{W}), \operatorname{LIN}(\mathrm{U}), \operatorname{LIN}(\mathrm{V})$, $\mathrm{LIN}(\mathrm{W}), \operatorname{IN}(\mathrm{X})$	-0.3 to VDD	V
Fault Output Supply Voltage and Enable Input	VFLTEN	FLTEN Terminal	-0.3 to VDD	V
ITRIP(I) Terminal Voltage	VITRIP(I)	ITRIP(I) Terminal	0.3 to +10.0	V
ITRIP(P) Terminal Voltage	VITRIP(P)	ITRIP(P) Terminal	1.5 to +2.0	V

Intelligent Power Module Total

Operating Junction Temperature	Tj		150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$
Module Case Operation Temperature	Tc	IPM Case Temperature	40 to +100	${ }^{\circ} \mathrm{C}$
Tightening Torque	MT	Case Mounting Screws	0.9	Nm
Isolation Voltage	Viso	60 Hz, Sinusoidal, AC 1 minute, Connec- tion Pins to Heat Sink Plate (Note 4)	2000	Vrms

[^0]Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Conditions	Min	Typ	Max	Unit
Junction to Case Thermal Resistance	Rth(j-c) M	PFC MOSFET	-	1.3	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Rth(j-c) R	PFC Diode	-	3.2	3.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Rth(j-c) Q	Inverter IGBT Part (per 1/6 Module)	-	3.5	4.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Rth(j-c) F	Inverter FRD Part (per 1/6 Module)	-	6.8	8.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters

Table 4. RECOMMENDED OPERATING RANGES

Rating	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	VPN	P - NX, NU, NV, NW	0	280	400	V
High-Side Control Bias Voltage	VBS	$\mathrm{VB}(\mathrm{U})-\mathrm{U}, \mathrm{VB}(\mathrm{V})-\mathrm{V}, \mathrm{VB}(\mathrm{W})-\mathrm{W}$	13.0	15	17.5	V
Control Supply Voltage	VDD	VDD - VSS (see table note below)	14.0	15	16.5	V
ON Threshold Voltage	$\mathrm{VIN}(\mathrm{ON})$	$\begin{aligned} & \operatorname{HIN}(\mathrm{U}), \operatorname{HIN}(\mathrm{V}), \operatorname{HIN}(\mathrm{W}), \operatorname{LIN}(\mathrm{U}), \operatorname{LIN}(\mathrm{V}) \text {, } \\ & \operatorname{LIN}(\mathrm{W}), \operatorname{IN}(X) \end{aligned}$	2.5	-	5.0	V
OFF Threshold Voltage	VIN(OFF)		0	-	0.3	V
PWM Frequency (PFC)	fPWMp		1	-	125	kHz
		No load, Duty $=0.5, \mathrm{Tc}=25^{\circ} \mathrm{C}$	1	-	300	kHz
PWM Frequency (Inverter)	fPWMi		1	-	20	kHz
Dead Time	DT	Turn-off to Turn-on (external)	1	-	-	$\mu \mathrm{S}$
Allowable Input Pulse Width	PWIN	ON and OFF	1	-	-	$\mu \mathrm{S}$
Tightening Torque		'M3' Type Screw	0.6	-	0.9	Nm

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, VBIAS (VBS, VDD) $=15 \mathrm{~V}$ unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
PFC Section						
Drain-Source Leakage Current	VDSS $=600 \mathrm{~V}$	IDSS	-	-	100	$\mu \mathrm{A}$
Reverse Leakage Current (PFC Diode)	$\mathrm{VRRM}=600 \mathrm{~V}$	IR	-	-	500	$\mu \mathrm{A}$
Drain-Source On Resistance	$\mathrm{ID}=20 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	RDS(on)	-	0.125	0.18	Ω
	$\mathrm{ID}=10 \mathrm{~A}, \mathrm{Tj}=100^{\circ} \mathrm{C}$		-	0.23	-	Ω
Diode Forward Voltage (PFC Diode)	$\mathrm{IF}=20 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	VF	-	1.85	2.6	V
	$\mathrm{IF}=10 \mathrm{~A}, \mathrm{Tj}=100^{\circ} \mathrm{C}$		-	1.55	-	V
MOSFET Body Diode Forward Voltage	$\mathrm{IF}=10 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	VSD	-	1.0	1.5	V
Switching Time	$\mathrm{ID}=20 \mathrm{~A}, \mathrm{VPN}=300 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	ton	-	0.4	0.9	$\mu \mathrm{s}$
		toff	-	0.6	1.1	$\mu \mathrm{s}$

Inverter Section

Collector-Emitter Leakage Current	VCES $=600 \mathrm{~V}$	ICES	-	-	100	$\mu \mathrm{A}$
Bootstrap Diode Leakage Current	VRRM (DB) $=600 \mathrm{~V}$	IR(DB)	-	-	100	$\mu \mathrm{A}$
Collector-Emitter Saturation Voltage	$\mathrm{IC}=10 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	VCE(sat)	-	2.0	2.65	V
	$I C=5 \mathrm{~A}, \mathrm{Tj}=100^{\circ} \mathrm{C}$		-	1.7	-	V
FWDi Forward Voltage	$\mathrm{IF}=10 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	VF	-	1.8	2.4	V
	$\mathrm{IF}=5 \mathrm{~A}, \mathrm{Tj}=10{ }^{\circ} \mathrm{C}$		-	1.4	-	V
Switching Times	$\mathrm{IC}=10 \mathrm{~A}, \mathrm{VPN}=300 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	ton	-	0.5	1.0	$\mu \mathrm{S}$
		toff	-	0.6	1.1	$\mu \mathrm{S}$

NFCS1060L3TT

Table 5. ELECTRICAL CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, VBIAS (VBS, VDD) $=15 \mathrm{~V}$ unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Turn-on Switching Loss	$\mathrm{IC}=10 \mathrm{~A}, \mathrm{VPN}=300 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	EON	-	295	-	$\mu \mathrm{J}$
Turn-off Switching Loss		E OFF	-	155	-	$\mu \mathrm{J}$
Total Switching Loss		$\mathrm{E}_{\text {TOT }}$	-	450	-	$\mu \mathrm{J}$
Turn-on Switching Loss	$I C=5 \mathrm{~A}, \mathrm{VPN}=300 \mathrm{~V}, \mathrm{Tj}=100^{\circ} \mathrm{C}$	$\mathrm{E}_{\text {ON }}$	-	195	-	$\mu \mathrm{J}$
Turn-off Switching Loss		E	-	115	-	$\mu \mathrm{J}$
Total Switching Loss		$\mathrm{E}_{\text {TOT }}$	-	310	-	$\mu \mathrm{J}$
Diode Reverse Recovery Energy	$I C=5 \mathrm{~A}, \mathrm{VPN}=300 \mathrm{~V}, \mathrm{Tj}=100^{\circ} \mathrm{C}$	$E_{\text {REC }}$	-	50	-	$\mu \mathrm{J}$
Diode Reverse Recovery Time		trr	-	200	-	ns
Reverse Bias Safe Operating Area	$\mathrm{IC}=20 \mathrm{~A}, \mathrm{VCES}=450 \mathrm{~V}$	RBSOA	Full Square			-
Short Circuit Safe Operating Area	VCES $=400 \mathrm{~V}, \mathrm{Tj}=150^{\circ} \mathrm{C}$	SCSOA	5	-	-	$\mu \mathrm{s}$
Allowable Offset Voltage Slew Rate	U - NU, V - NV, W - NW	dv/dt	-50	-	50	V/ns

Driver Section

Quiescent VBS Supply Current	VBS $=15 \mathrm{~V}$, per driver	IQBS	-	0.08	0.4	mA
Quiescent VDD Supply Current	$\mathrm{VDD}=15 \mathrm{~V}$	IQDD	-	0.85	2.4	mA
ON Threshold Voltage	$\operatorname{HIN}(\mathrm{U}), \operatorname{HIN}(\mathrm{V}), \operatorname{HIN}(W), \operatorname{LIN}(\mathrm{U})$, $\operatorname{LIN}(\mathrm{V}), \operatorname{LIN}(\mathrm{W}), \operatorname{IN}(\mathrm{X})-\mathrm{VSS}$	VIN(ON)	2.5	-	-	V
OFF Threshold Voltage		VIN(OFF)	-	-	0.8	V
Logic Input Current	$\mathrm{VIN}=+3.3 \mathrm{~V}$	$\mathrm{l}_{1}+$	-	100	143	$\mu \mathrm{A}$
Logic Input Current	$\mathrm{VIN}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{IN}-}$	-	-	2	$\mu \mathrm{A}$
Bootstrap Diode Forward Voltage	$\mathrm{IF}(\mathrm{DB})=0.1 \mathrm{~A}$	VF(DB)	-	0.8	-	V
Bootstrap Circuit Resistance	Resistor Value for Common Boot Charge Line	RBC	-	2	-	Ω
	Resister Values for Separate Boot Charge Lines	RBS	-	10	-	Ω
FLTEN Terminal Sink Current	VFLTEN : ON / VFAULT $=0.1 \mathrm{~V}$	IoSD	-	2	-	mA
FLTEN Output Pulse Width		tFO	1.0	-	3.0	ms
FLTEN Threshold	VEN ON-state Voltage	VEN(ON)	2.5	-	-	V
	VEN OFF-state Voltage	VEN(OFF)	-	-	0.8	V
ITRIP(I) Threshold Voltage	ITRIP(I) - VSS	VITRIPth(I)	0.44	0.49	0.54	V
ITRIP(P) Threshold Voltage	ITRIP(P) - VSS	VITRIPth(P)	0.37	-0.31	-0.25	V
Shutdown Propagation Delay for INV		tITRIP(I)	490	600	850	ns
Shutdown Propagation Delay for PFC		tITRIP(P)	440	550	800	ns
ITRIP Blanking Time		tITRIPBL	290	350	-	ns
Supply Circuit Under-voltage Protection	Reset Level	UVBSR UVDDR	10.5	11.1	11.7	V
Supply Circuit Under-voltage Protection	Detection Level	UVBSD UVDDD	10.3	10.9	11.5	V
Supply Circuit Under-voltage Protection Hysteresis		UVBSHYS UVDDHYS	0.14	0.2	-	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - PFC SECTION

Figure 4. VDS versus ID for Different Temperatures (VDD = 15 V)

Figure 6. EON versus ID for Different Temperatures

Figure 8. Thermal Impedance Plot (PFC MOSFET)

Figure 10. Turn-on Waveform $\mathrm{Tj}=100^{\circ} \mathrm{C}, \mathrm{VPN}=300 \mathrm{~V}$

Figure 5. PFC Diode VF versus IF for Different Temperatures

Figure 7. EOFF versus ID for Different Temperatures

Figure 9. Thermal Impedance Plot (PFC Diode)

Figure 11. Turn-off Waveform $\mathrm{Tj}=100^{\circ} \mathrm{C}, \mathrm{VPN}=300 \mathrm{~V}$

TYPICAL CHARACTERISTICS - INVERTER SECTION

Figure 12. VCE versus IC for Different Temperatures (VDD/VBS = 15 V)

Figure 14. EON versus IC for Different Temperatures

Figure 16. Thermal Impedance Plot (IGBT)

Figure 18. Turn-on Waveform $\mathrm{Tj}=100^{\circ} \mathrm{C}, \mathrm{VPN}=300 \mathrm{~V}$

Figure 13. VF versus IF for Different Temperatures

Figure 15. EOFF versus IC for Different Temperatures

Figure 17. Thermal Impedance Plot (FRD)

Figure 19. Turn-off Waveform $\mathrm{Tj}=100^{\circ} \mathrm{C}, \mathrm{VPN}=300 \mathrm{~V}$

APPLICATIONS INFORMATION

Input / Output Timing Chart

NOTES:

1. This section of the timing diagram shows the effect of cross-conduction prevention.
2. This section of the timing diagram shows that when the voltage on VDD decreases sufficiently all gate output signals will go low, switching off all six IGBTs and PFC MOSFET. When the voltage on VDD rises sufficiently, normal operation will resume.
3. This section shows that when the bootstrap voltage on VBS drops, the corresponding high side output $\mathrm{U}(\mathrm{V}, \mathrm{W})$ is switched off. When the voltage on VBS rises sufficiently, normal operation will resume.
4. This section shows that when the voltage on ITRIP(I) exceeds the threshold, all IGBTs and PFC MOSFET are turned off. Normal operation resumes later after the over-current condition is removed. Similarly, when the voltage on ITRIP(P) exceeds the threshold, all IGBTs and PFC MOSFET are turned off. Normal operation resumes later after the over-current condition is removed
5. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN input before enabling the driver for the HIN signal.

Figure 20. Input / Output Timing Chart

Table 6. INPUT / OUTPUT LOGIC TABLE

INPUT							
LIN	LIN	ITRIP(I)	ITRIP(P)	High side IGBT	Low side IGBT	U,V,W	VFLTEN
H	L	L	L	ON (Note 5)	OFF	P	OFF
L	H	L	L	OFF	ON	NU,NV,NW	OFF
L	L	L	L	OFF	OFF	High Impedance	OFF
H	H	L	L	OFF	OFF	High Impedance	OFF
X	X	H	X	OFF	OFF	High Impedance	ON
X	X	X	H	OFF	OFF	High Impedance	ON

NFCS1060L3TT

Table 7. THERMISTOR CHARACTERISTICS

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Resistance	R_{25}	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	44.65	47	49.35	$\mathrm{k} \Omega$
	R_{125}	$\mathrm{Tc}=125^{\circ} \mathrm{C}$	1.29	1.41	1.53	$\mathrm{k} \Omega$
B-Constant $\left(25-50^{\circ} \mathrm{C}\right)$	-	B	4009.5	4050	4090.5	K
Temperature Range	-	-	-40	-	+125	${ }^{\circ} \mathrm{C}$

Figure 21. Thermistor Resistance - Thermistor Temperature

Signal Inputs

Each signal input has a pull-down resistor internally. An additional pull-down resistor of between $2.2 \mathrm{k} \Omega$ and $3.3 \mathrm{k} \Omega$ is recommended on each input to improve noise immunity.

FLTEN pin

The FLTEN pin is connected internally to an open-drain FAULT output and an ENABLE input requiring a pull-up resistor. If the pull-up voltage is 5 V , use a pull-up resistor with a value of $6.8 \mathrm{k} \Omega$ or higher. If the pull-up voltage is 15 V , use a pull-up resistor with a value of $20 \mathrm{k} \Omega$ or higher. The pulled up voltage in normal operation for the FLTEN pin should be above 2.5 V , noting that it is connected to an internal ENABLE input. The FAULT output is triggered if there is a VDD under-voltage or an overcurrent condition on either the PFC or inverter stages.

Driving the FLTEN terminal pin is used to enable or shut down the built-in driver. If the voltage on the FLTEN pin rises above the positive going FLTEN threshold, the output drivers are enabled. If the voltage on the FLTEN pin falls below the negative going FLTEN threshold, the drivers are disabled.

Under-voltage Protection

If VDD goes below the VDD supply undervoltage lockout falling threshold, the FAULT output is switched on. The FAULT output stays on until VDD rises above the VDD supply under-voltage lockout rising threshold. The hysteresis is approximately 200 mV .

Overcurrent Protection

An over-current condition is detected if the voltage on the ITRIP(I) or ITRIP(P) pins are exceed the reference voltage (Refer to Table 6 - Input / Output Logic Table). There is a blanking time of typically 350 ns to improve noise immunity. After a shutdown propagation delay of typically $0.6 \mu \mathrm{~s}$, the FAULT output is switched on.

The over-current protection threshold should be set to be equal or lower to 2 times the module rated current (Io).

An additional fuse is recommended to protect against system level or abnormal over-current fault conditions.

Capacitors on High Voltage and VDD supplies

Both the high voltage and VDD supplies require an electrolytic capacitor and an additional high frequency capacitor. The recommended value of the high frequency capacitor is between 100 nF and $10 \mu \mathrm{~F}$.

Minimum Input Pulse Width

When input pulse width is less than $1 \mu \mathrm{~s}$, an output may not react to the pulse. (Both ON signal and OFF signal)

Calculation of Bootstrap Capacitor Value

The bootstrap capacitor value CB is calculated using the following approach. The following parameters influence the choice of bootstrap capacitor:

- VBS: Bootstrap power supply. 15 V is recommended.
- QG: Total gate charge of IGBT at $\mathrm{VBS}=15 \mathrm{~V}$.
12.7 nC
- UVLO: Falling threshold for UVLO. Specified as 12 V.
- IDMAX: High side drive power dissipation. Specified as 0.4 mA
- TONMAX: Maximum ON pulse width of high side IGBT.

Capacitance calculation formula:

$$
\mathrm{CB}=(\mathrm{QG}+\mathrm{IDMAX} * \mathrm{TONMAX}) /(\mathrm{VBS}-\mathrm{UVLO})
$$

CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to $47 \mu \mathrm{~F}$, however, the value needs to be verified prior to production. When not using the bootstrap circuit, each high side driver power supply requires an external independent power supply.

Figure 22. Bootstrap Capacitance versus Ton-max

Table 8. MOUNTING INSTRUCTIONS

Item	Recommended Condition
Pitch	$56.0 \pm 0.1 \mathrm{~mm}$ (Please refer to MECHANICAL CASE OUTLINE)
Screw	Diameter : M3 Screw head types: pan head, truss head, binding head
Washer	Plane washer The size is D: $7 \mathrm{~mm}, \mathrm{~d}: 3.2 \mathrm{~mm}$ and t: 0.5 mm JIS B 1256
Heat sink	Material: Aluminum or Copper Warpage (the surface that contacts IPM) : -50 to $100 \mathrm{\mu m}$ Screw holes must be countersunk. No contamination on the heat sink surface that contacts IPM.
Torque	Temporary tightening : 20 to 30% of final tightening on first screw Temporary tightening : 20 to 30% of final tightening on second screw Final tightening : 0.6 to 0.9 Nm on first screw Final tightening : 0.6 to 0.9 Nm on second screw
Grease	Silicone grease. Thickness : 100 to 200 mm Uniformly apply silicone grease to whole back. Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility parameters have a strong influence on performance.

Figure 23. Mount IPM on a Heat Sink

Figure 24. Size of Washer

Figure 25. Uniform Application of Grease Recommended

Steps to mount an IPM on a heat sink

$1^{\text {st }}$: Temporarily tighten maintaining a left/right balance.
$2^{\text {nd }}$: Finally tighten maintaining a left/right balance.

NFCS1060L3TT

TEST CIRCUITS

- ICES, IDSS, IR, IR(DB)

	Inverter High Side				Inverter Low Side		
	U	V	W	U	V	W	MOSFET
A	16	16	16	13	9	5	1
B	13	9	5	22	21	20	19

	Boot Strap Diode			PFC					
	Diode				$	$	U	W	W
:---:	:---:	:---:							
A	12	8							
4	16								
B	35	35							
35	1								

- VCE(sat), RDS(on) (Test by pulse)

	Inverter High Side				Inverter Low Side		
	U	V	W	U	V	W	MOSFET
A	16	16	16	13	9	5	1
B	13	9	5	22	21	20	19
C	23	24	25	26	27	28	29

- VF, VF(DB), VSD (Test by pulse)

	Inverter High Side			Inverter Low Side			
	U	V	W	U	V	W	
A	16	16	16	13	9	5	
B	13	9	5	22	21	20	

	Boot Strap Diode			PFC Diode	MOSFET Body Diode
	U	V	W		
A	12	8	4	16	1
B	34	34	34	1	19

- IQBS, IQDD

	VBS U	VBS V	VBS W	VDD
A	12	8	4	34
B	13	9	5	35

Figure 26. Test Circuit for ICES, IDSS, IR

Figure 27. Test Circuit for VCE(sat)

Figure 28. Test Circuit for VF

Figure 29. Test Circuit for IQBS, IQDD

- VITRIP(I), VITRIP(P)

	$\operatorname{VITRIP}(\mathrm{I})(\mathrm{U}-)$	$\mathrm{VITRIP}(\mathrm{P})$
A	13	1
B	22	19
C	26	29
D	32	31

Figure 31. Test Circuit for VITRIP(I), VITRIP(P)

Figure 30.

- Switching Time (The circuit is a representative example of the Inverter Low side U phase.)

	Inverter High Side			Inverter Low Side			PFCMOSFET
	U	V	W	U	V	W	
A	16	16	16	16	16	16	16
B	22	21	20	22	21	20	19
C	13	9	5	13	9	5	1
D	22	21	20	16	16	16	16
E	23	24	25	26	27	28	29

Figure 33. Test Circuit for Switching Time

Figure 32.

SIP35 56x25.8 / SIP2A-2
 CASE 127DT
 ISSUE A

Nates

1. DIMENSIONING AND TQLERANCING PER. ASME Y14.5M, 2009.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIONS b AND e APPLY TD THE PLATED LEAD AND ARE MEASURED BETWEEN 1.00 AND 2.00 FRDM THE LEAD TIP
4. position gf the leads is determined at the ROCT DF THE LEAD WHERE IT EXITS THE PACKAGE bODY.
5. MIRRDR SURFACE MARK INDICATES PIN 1 POSITIIN.
6. MISSING PINS ARE: $2,3,6,7,10,11,14,15,17$, AND 18.

GENERIC MARKING DIAGRAM*

XXXXXXXXXXXXXXXXX ZZZATYWW

$$
\begin{array}{ll}
\text { XXXX } & =\text { Specific Device Code } \\
Z Z Z & =\text { Assembly Lot Code } \\
\text { AT } & =\text { Assembly \& Test Location } \\
\text { Y } & =\text { Year } \\
\text { WW } & =\text { Work Week }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04875G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SIP35 56X25.8 / SIP2A-2 | PAGE 1 OF 1 |

ON Semiconductor and (iiN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Factor Correction - PFC category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
L6564TD FAN7930MX L4984D NCP1612A1DR2G NCP1618ADR2G TDA4863GXUMA2 ICE2PCS06GXUMA1 PFS7624C-TL TDA48632GXUMA2 UCC29910APWR UCC2818AQDRQ1 TDA4862GGEGXUMA2 L6561D013TR L6566B ICE3PCS03G AL1788W67 LT1249CN8\#PBF NCP1616A1DR2G LT1509CN\#PBF BR6000-R12 ICE3PCS02GXUMA1 DCRL5 B44066R6012E230 ICE2PCS01GXUMA1 ADP1048ARQZ-R7 LT1249IS8\#PBF LT1249CS8\#PBF FAN6920MRMY FAN4801SMY AL6562AS-13 ICE1PCS01G NCP1652DR2G ICE2PCS05GXUMA1 ICE2PCS01G ICE2PCS06G ICE3PCS01G ICE3PCS01GXUMA1 TDA4863 TDA4863-2 TDA4863-2G XDPL8210XUMA1 AP1682EMTR-G1 ISL6731BFBZ NCP1615A1DR2G NCP1605DR2G LT1509CSW\#PBF IRS2505LTRPBF TEA1761T/N2/DG,118 TEA1762T/N2/DG,118 TEA1791T/N1,118

[^0]: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters
 2. This surge voltage developed by the switching operation due to the wiring inductance between P and $N U, N V, N W$ terminals.
 3. $V B S=V B(U)-U, V B(V)-V, V B(W)-W$
 4. Test conditions : AC $2500 \mathrm{~V}, 1 \mathrm{sec}$
