

NGB8206AN - 20 A, 350 V, N-Channel Ignition IGBT, D²PAK

20 Amps, 350 Volts $V_{re}(on) \le 1.3 \text{ V } @$ $I_{\text{C}} = 10\text{A, V}_{\text{GE}} \ge 4.5\text{ V}$

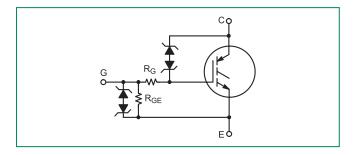
Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	390	V
Collector-Gate Voltage	V _{CER}	390	V
Gate-Emitter Voltage	V _{GE}	±15	V
Collector Current-Continuous @T _c = 25°C - Pulsed	I _c	20 50	A _{DC}
Continuous Gate Current	l _G	1.0	mA
Transient Gate Current (t \leq 2 ms, f \leq 100 Hz)	l _G	20	mA
ESD (Charged-Device Model)	ESD	2.0	kV
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω, C = 200 pF	ESD	500	V
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D	150 1.0	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over-Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.


Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- These are Pb-Free Devices

Applications

• Ignition Systems

Functional Diagram

Additional Information

Samples

Unclamped Collector–To–Emitter Avalanche Characteristics (–55 $^{\circ}$ \leq T $_{\rm J}$ \leq 175 $^{\circ}$ C)

	Symbol	Value	Unit
Single Pulse Collector-to-Emitter Avalanche Energy			
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 16.7 \text{ A}, R_G = 1000 \Omega, L = 1.8 \text{ mH}, Starting T_J = 25 ^{\circ}\text{C}$		250	
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 14.9 \text{ A}, R_G = 1000 \Omega, L = 1.8 \text{ mH}, Starting T_J = 150 °C$	E _{AS}	200	mJ
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 14.1 \text{ A}, R_G = 1000 \Omega, L = 1.8 \text{ mH}, Starting T_J = 175°C$		180	
Reverse Avalanche Energy			
$V_{CC} = 100 \text{ V}, V_{GE} = 20 \text{ V}, P_k I_L = 25.8 \text{ A}, L = 6.0 \text{ mH}, \text{ Starting T}_J = 25^{\circ}\text{C}$	E _{AS(R)}	2000	mJ

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{eJC}	1.0	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T _L	275	°C

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Collector-Emitter	D\/	$I_{c} = 2.0 \text{ mA}$	$T_J = -40$ °C to 150°C	325	350	375	V
Clamp Voltage	BV _{ces}	$I_{\rm C}$ = 10 mA	$T_J = -40$ °C to 150°C	340	365	390	V
		$V_{CE} = 15 \text{ V},$ $V_{GE} = 0 \text{ V},$	T _J = 25°C	_	0.1	1.0	
Zero Gate Voltage	l _{CES}		T _J = 25°C	0.5	1.5	10	μΑ
Collector Current	CES	$V_{CE} = 175V$ $V_{GF} = 0 V$	T _J = 175°C	1.0	25	100*	
			T _J = -40°C	0.4	0.8	5.0	
			T _J = 25°C	30	35	39	
Reverse Collector–Emitter Clamp Voltage	BV _{CES(R)}	$I_{c} = -75 \text{ mA}$	T _J = 175°C	32	37	42	V
			T _J = -40°C	29	32	37	
			T _J = 25°C	0.05	0.25	1.0	
Reverse Collector–Emitter Leakage Current	I _{CES(R)}	$V_{CE} = -24 V$	T _J = 175°C	1.0	12.5	25	mA
			T _J = -40°C	0.005	0.03	0.25	
Gate-Emitter Clamp Voltage	BV _{GES}	I _G = ±5.0 mA	$T_{J} = -40^{\circ}\text{C to}$ 175°C	12	12.5	14	V
Gate-Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 5.0 V$	$T_{J} = -40^{\circ}\text{C to}$ 175°C	200	300	350*	μА
Gate Resistor	$R_{\rm G}$	-	$T_{J} = -40^{\circ}\text{C to}$ 175°C	-	-	-	Ω
Gate Emitter Resistor	R _{GE}	-	T _J = -40°C to 175°C	14.25	16	25	kΩ

Electrical Characteristics - ON (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
			T _J = 25°C	1.5	1.8	2.1	
Gate Threshold Voltage	V _{GE(th)}	$I_{c} = 1.0 \text{ mA},$	T _J = 175°C	0.7	1.0	1.3	V
		$V_{GE} = V_{CE}$	T _J = -40°C	1.7	2.0	2.3*	
Threshold Temperature Coefficient (Negative)	-	-	-	3.8	4.6	6.0	mV/°C

 $^{{\}rm *Maximum\,Value\,\,of\,\,Characteristic\,\,across\,Temperature\,\,Range}.$

^{3.} Pulse Test: Pulse Width $\leq 300~\mu\text{S},~\text{Duty Cycle} \leq 2\,\%$.

Electrical Characteristics - ON (Note 4)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit							
			T _J = 25°C	0.95	1.15	1.35								
		$I_{c} = 6.5 \text{ A},$ $V_{ge} = 3.7 \text{ V}$	T _J = 175°C	0.70	0.95	1.15								
		V GE − 0.7 V	T _J = -40°C	1.0	1.30	1.40								
			T _J = 25°C	0.95	1.25	1.45								
		$I_{c} = 9.0 \text{ A},$ $V_{ge} = 3.9 \text{ V}$	T _J = 175°C	0.8	1.05	1.25								
		v _{GE} = 0.5 v	T _J = -40°C	1.1	1.4	1.50								
			T _J = 25°C	0.85	1.15	1.4								
	V _{CE (on)}	$I_{c} = 7.5 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 175°C	0.7	0.95	1.2								
Callegia to Facility		V _{CE (on)}			v _{GE} – 4.5 v	T _J = -40°C	1.0	1.3	1.6*					
Collector-to-Emitter On-Voltage				T _J = 25°C	0.9	1.2	1.6	V						
						$I_{c} = 10 \text{ A},$	$I_{c} = 10 \text{ A},$	$I_c = 10 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	$I_{c} = 10 \text{ A},$	T _J = 175°C	0.8	1.05	1.4	
							·		T _J = -40°C	1.0	1.2	1.7*		
			T _J = 25°C	1.0	1.3	1.7								
		$I_{c} = 15 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 175°C	1.0	1.3	1.55								
		V _{GE} − 4.5 V	T _J = -40°C	1.1	1.35	1.8*	1							
		$I_{c} = 20 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 25°C	1.3	1.6	1.9								
			T _J = 175°C	1.2	1.5	1.8								
		v _{GE} – 4.5 v	T _J = -40°C	1.4	1.75	2.0*								
Forward Transconductance	gfs	$V_{CE} = 5.0 \text{ V},$ $I_{C} = 6.0 \text{ A}$	T _J = 25°C	10	18	25	Mhos							

 $^{{\}rm *Maximum\,Value\,\,of\,\,Characteristic\,\,across\,Temperature\,\,Range}.$

^{3.} Pulse Test: Pulse Width $\leq 300~\mu\text{S},~\text{Duty Cycle} \leq 2\,\%$.

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Input Capacitance	C _{ISS}			1100	1300	1500	
Output Capacitance	C _{oss}	$V_{CE} = 25 V$ f = 10 kHz	T _J = 25°C	70	80	90	pF
Transfer Capacitance	C _{RSS}			18	20	22	

Switching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn-Off Delay Time	+	V _{cc} = 300 V,	T _J = 25°C	6.0	8.0	10	
(Resistive)	t _{d (off)}	$I_{c} = 9 A$ $R_{G} = 1.0 k\Omega,$	T _J = 175°C	6.0	8.0	10	
Fall Time		$R_L = 33 \Omega,$ $V_{GE} = 5.0 V$	T _J = 25°C	4.0	6.0	8.0	
(Resistive)	t _f		T _J = 175°C	8.0	10.5	14	
Turn-Off Delay Time	_		T _J = 25°C	3.0	5.0	7.0	
(Inductive)	t _{d (off)}	$V_{cc} = 300 \text{ V},$ $I_{c} = 9 \text{ A}$	T _J = 175°C	5.0	7.0	9.0	
Fall Time		$R_G = 1.0 \text{ k}\Omega$, L = 300 μH, $V_{GF} = 5.0 \text{ V}$	T _J = 25°C	1.5	3.0	4.5	μSec
(Inductive)	t _f	v _{GE} = 3.0 v	T _J = 175°C	5.0	7.0	10	
Torra On Dalay Time	_		T _J = 25°C	1.0	1.5	2.0	
Turn-On Delay Time	t _{d (on)}	$V_{CC} = 14 \text{ V},$ $I_{C} = 9.0 \text{ A}$	T _J = 175°C	1.0	1.5	2.0	
Die Tier	_	$R_G = 1.0 \text{ k}\Omega,$ $R_L = 1.5 \Omega,$ $V_{GE} = 5.0 \text{ V}$	T _J = 25°C	4.0	6.0	8.0	
Rise Time	t _r	V _{GE} — 5.5 V	T _J = 175°C	3.0	5.0	7.0	

^{2.} Pulse Test: Pulse Width $\leq 300~\mu\text{S},~\text{Duty Cycle} \leq 2\,\%\,.$

^{*}Maximum Value of Characteristic across Temperature Range.

Ratings and Characteristic Curves

Figure 1. Self Clamped Inductive Switching

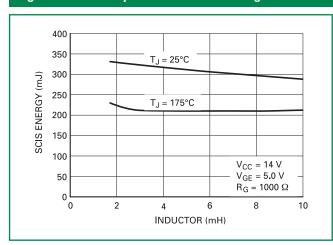


Figure 2. Open Secondary Avalanche Current vs. Temperature

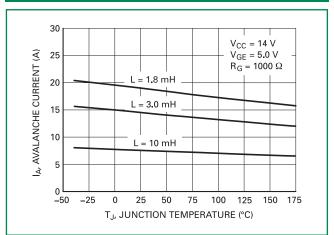


Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature

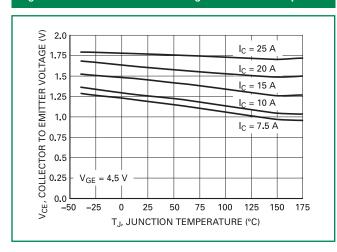


Figure 4. Collector Current vs. Collector-to-Emitter Voltage

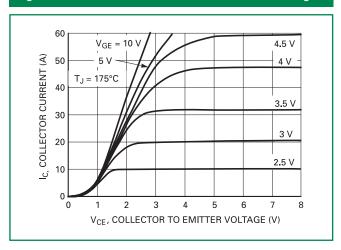
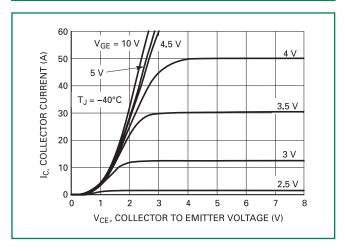



Figure 5. Collector Current vs. Collector-to-Emitter Voltage

Figure 6. Collector Current vs. Collector-to-Emitter Voltage

Figure 7. Transfer Characteristics

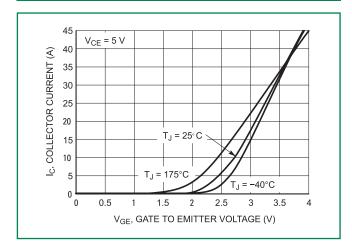


Figure 8. Collector-to-Emitter Leakage Current vs. Temperature

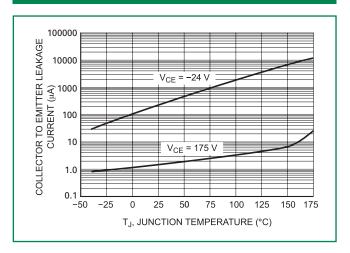


Figure 9. Gate Threshold Voltage vs. Temperature

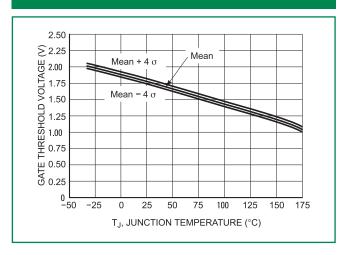


Figure 10. Capacitance vs. Collector-to-Emitter Voltage

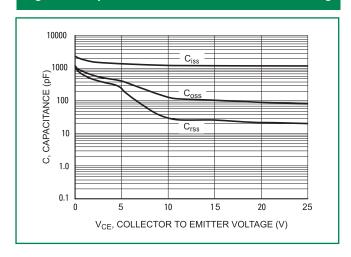


Figure 11. Resistive Switching Fall Time vs. Temperature

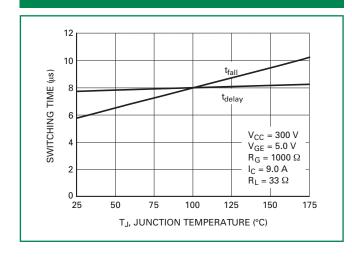
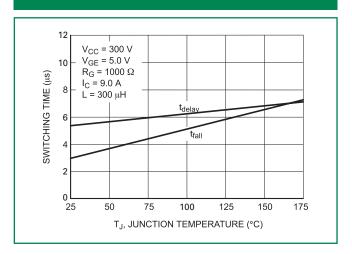
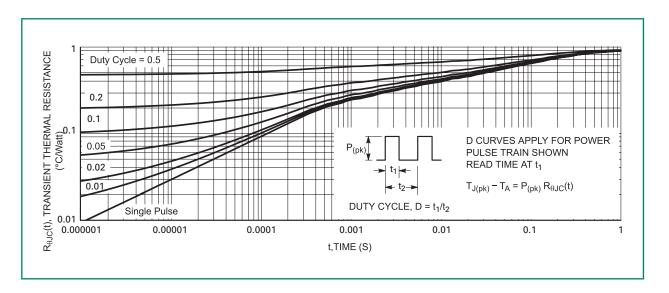


Figure 12. Inductive Switching Fall Time vs. Temperature

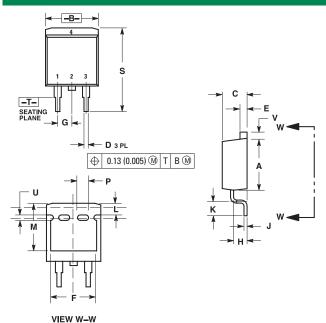
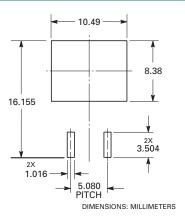
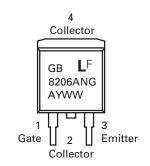


Figure 13. Minimum Pad Transient Thermal Resistance (Non-normalized Junction-to-Ambient)

Dimensions



	Inc	hes	Millim	neters
Dim	Min	Max	Min	Max
А	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100	BSC	2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197	REF	5.00 REF	
Р	0.079 REF		2.00 REF	
R	0.039 REF		0.99 REF	
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

Soldering Footrpint

Part Marking System

GB8206AN = Device Code

 $\begin{array}{ll} \mathsf{A} = & \mathsf{Assembly\ Location} \\ \mathsf{Y} = & \mathsf{Year} \\ \mathsf{WW} & = \mathsf{Work\ Week} \\ \mathsf{G} & = \mathsf{Pb}\text{-}\mathsf{Free\ Package} \end{array}$

ORDERING INFORMATION

Device	Package	Shipping
NGB8206ANT4G	D ² PAK	800 / Tape & Reel
NGB8206ANTF4G	(Pb-Free)	700 / Tape & Reel
NGB8206ANSL3G		50 Units / Rail

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefluse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefluse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30
GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG
RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG
IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J
APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1
IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1
XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1
FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2
IKP20N60TXKSA1 IHW20N65R5XKSA1