NGD8201AN - 20 A, 400 V, N-Channel Ignition IGBT, DPAK

20 Amps, 400 Volts $V_{CE}(on) \le 1.3 V @$ $I_{C} = 10 \text{ A}, V_{GE} \ge 4.5 \text{ V}$

Maximum Ratings (T = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{ces}	440	V
Gate-Gate Voltage	V _{ces}	440	V
Gate-Emitter Voltage	V _{ge}	± 15	V
Collector Current-Continuous @T _c = 25°C - Pulsed	Ι _c	20 50	A _{DC} A _{AC}
Continous Gate Current	I _G	1.0	mA
Transient Gate Current (t \leq 2 ms, f \leq 100 Hz)	I _G	20	mA
ESD (Charged–Device Model)	ESD	2.0	kV
ESD (Human Body Model) R = 1500 Ω, C = 100 pF	ESD	2.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	500	V
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D	125 0.83	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over– Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Po

Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- DPAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- New Design Increases Unclamped Inductive Switching (UIS) Energy Per Area
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- Emitter Ballasting for Short-Circuit Capability
- These are Pb-Free Devices

Functional Diagram

Additional Information

Unclamped Collector–To–Emitter Avalanche Characteristics

	Symbol	Value	Unit
Single Pulse Collector-to-Emitter Avalanche Energy			
$V_{_{CC}}$ = 50 V, $V_{_{GE}}$ = 5.0 V, $P_{_{K}}$ I $_{_{L}}$ = 16.7 A, $R_{_{G}}$ = 1000 Ω , L = 1.8 mH, Starting $T_{_{J}}$ = 25°C		250	
$V_{_{CC}}$ = 50 V, $V_{_{GE}}$ = 5.0 V, $P_{_{K}}$ I $_{_{L}}$ = 14.9 A, $R_{_{G}}$ = 1000 Ω , L = 3.0 mH, Starting $T_{_{J}}$ = 150°C	E _{AS}	200	mJ
$V_{_{CC}}$ = 50 V, $V_{_{GE}}$ = 5.0 V, $P_{_{K}}I_{_{L}}$ = 14.1 A, $R_{_{G}}$ = 1000 Ω , L = 1.8 mH, Starting $T_{_{J}}$ = 175°C		180	
Reverse Avalanche Energy			
$V_{cc} = 100 \text{ V}, V_{gE} = 20 \text{ V}, P_k I_L = 25.8 \text{ A}, L = 6.0 \text{ mH}, \text{ Starting } T_J = 25^{\circ}\text{C}$	E _{AS (R)}	2000	mJ

Thermal Characteristics

	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{ejc}	1.3	2000
Thermal Resistance, Junction to Ambient DPAK (Note 1)	R _{eja}	95	C/VV
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	275	°C

1. When surface mounted to an FR4 board using the minimum recommended pad size.

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Collector-Emitter	P	l _c = 2.0 mA	$T_J = -40^{\circ}C$ to 175°C	370	395	420	N	
Clamp Voltage	D _{VCES}	l _c = 10 mA	$T_{J} = -40^{\circ}C$ to 175°C	390	415	440	V	
		V _{CE} = 15 V V _{GE} = 0 V	T __ = 25°C	-	0.1	1.0		
Zero Gate Voltage			T_ = 25°C	0.5	1.5	10		
Collector Current	CES	V _{CE} = 200 V V _{GE} = 0 V	T _J = 175°C	1.0	25	100*	μΑ	
			T _J = −40°C	0.4	0.8	5.0		
Reverse Collector-Emitter Clamp Voltage	B _{VCES(R)}			T __ = 25°C	30	35	39	
		_{CES(R)} I _c = -75 mA	T _J = 175°C	35	39	45*	V	
			T _J = −40°C	30	33	37		
	I _{CES(R)}		T __ = 25°C	0.05	0.2	1.0		
Reverse Collector-Emitter Leakage Current		$V_{CE} = -24 V$	T _J = 175°C	1.0	8.5	25	mA	
			T _J = −40°C	0.005	0.025	0.2		
Gate-Emitter Clamp Voltage	BV _{GES}	I _g = ± 5.0 mA	$T_{J} = -40^{\circ}C$ to 175°C	12	12.5	14	V	
Gate-Emitter Leakage Current	I _{GES}	$V_{ge} = \pm 5.0 V$	$T_{J} = -40^{\circ}C$ to 175°C	200	300	350*	μΑ	
Gate Resistor	R _G	-	$T_{J} = -40^{\circ}C$ to 175°C	-	70	-	Ω	
Gate-Emitter Resistor	R _{GE}	-	$T_{J} = -40^{\circ}C$ to 175°C	14.25	16	25	kΩ	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

*Maximum Value of Characteristic across Temperature Range.

Electrical Characteristics - ON (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit				
			T _J = 25°C	1.5	1.8	2.1					
Gate Threshold Voltage	V _{GE (th)}	$I_c = 1.0 \text{ mA},$	T _J = 175°C	0.7	1.0	1.3	V				
		V _{GE} – V _{CE}	T_ = −40°C	1.7	2.0	2.3*					
Threshold Temperature Coefficient (Negative)	-	_	_	4.0	4.6	5.2	mV/∘C				
			T _J = 25°C	0.85	1.03	1.35					
		$I_{c} = 6.5 \text{ A},$	T _J = 175°C	0.7	0.9	1.15					
		V _{GE} = 0.7 V	T_= -40°C	0.09	1.11	1.4					
			T _J = 25°C	0.9	1.11	1.45					
		$I_{c} = 9.0 \text{ A},$	T _J = 175°C	0.8	1.01	1.25					
		$V_{GE} = 3.9 V$	T_= −40°C	1.0	1.18	1.5					
	V _{CE (on)}	I _c = 7.5 A, V _{GE} = 4.5 V	T_ = 25°C	0.85	1.15	1.4					
			T _J = 175°C	0.7	0.95	1.2					
Collector-to-Emitter			T_ = −40°C	1.0	1.3	1.6*					
On-Voltage		V _{CE (on)}	V _{CE (on)}	V _{CE (on)}	V _{CE (on)}		T_ = 25°C	1.0	1.3	1.6	V
		$I_{c} = 10 \text{ A},$	T _J = 175°C	0.8	1.05	1.4					
		V _{GE} - 4.0 V	T_= −40°C	1.1	1.4	1.7*					
			T_ = 25°C	1.15	1.45	1.7					
		$I_c = 15 \text{ A},$ V = 4.5 V	T _J = 175°C	1.0	1.3	1.55	-				
		V _{GE} = 4.0 V	T_= -40°C	1.25	1.55	1.8*					
			T_ = 25°C	1.1	1.4	1.9					
		$I_{c} = 20 \text{ A},$	T _J = 175°C	1.2	1.5	1.8					
		v _{GE} – 4.5 v	T_= -40°C	1.3	1.42	2.0					
For ward Transconductance	gfs	I _c = 6.0 A, V _{ce} = 5.0 V	T _J = 25°C	10	18	25	Mhos				

*Maximum Value of Characteristic across Temperature Range.

3. Pulse Test: Pulse Width \leq 300 µS, Duty Cycle \leq 2%.

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Input Capacitance	C _{ISS}			1100	1300	1500		
Output Capacitance	C _{oss}	f = 10 kHz V _{cc} = 25 V	f = 10 kHz V _{cc} = 25 V	T _J = -40°C to 175°C	70	80	90	pF
Transfer Capacitance	C _{RSS}			18	20	22		

Switching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit				
		V = 300 V	T _J = 25°C	6.0	8.0	10					
Turn-Oπ Delay Time (Resistive)	t _{d (off)}	$I_{c} = 9.0 \text{ A}$	T _J = 175°C	6.0	8.0	10					
		$R_{g} = 1.0 k\Omega$ $R_{L} = 33 \Omega$	T _J = 25°C	4.0	6.0	8.0					
Fail Time (Resistive)	t _f	$V_{ge} = 5.0 V$	T _J = 175°C	8.0	10.5	14					
	t _{d (off)}	V _{cc} = 300 V	T _J = 25°C	3.0	5.0	7.0					
lurn-Off Delay lime (Inductive)		t _{d (off)}	$I_{c} = 9.0 \text{ A}$	T _J = 175°C	5.0	7.0	9.0				
		$R_{g} = 1.0 \text{ k}\Omega$ L = 300 µH	T _J = 25°C	1.5	3.0	4.5	μSec				
Fail Lime (inductive)	τ _f	ť	ť	ť	ť	$V_{ge} = 5.0 V$	T _J = 175°C	5.0	7.0	10	
		V _{cc} = 14 V	T _J = 25°C	1.0	1.5	2.0					
Iurn-On Delay Iime	t _{d (on)}	$I_{c} = 9.0 \text{ A}$	T _J = 175°C	1.0	1.5	2.0					
Rise Time		$R_{\rm g} = 1.0$ kΩ $R_{\rm L} = 1.5$ Ω	T _J = 25°C	4.0	6.0	8.0					
		$V_{ge} = 5.0 V$	T _J = 175°C	3.0	5.0	7.0					

Typical Electrical Characteristics

Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature

Figure 5. Collector Current vs. Collector-to-Emitter Voltage

30 $V_{CC} = 14 V$ V_{GE} = 5.0 V $\overline{\mathsf{A}}$ 25 R_G = 1000 Ω AVALANCHE CURRENT L = 1.8 mH 20 L = 3.0 mH 15 10 L = 10 mH 5 ý. 0 -50 -25 0 25 50 75 100 125 150 175 TJ, JUNCTION TEMPERATURE (°C)

Figure 2. Open Secondary Avalanche Current vs. Temperature

Figure 6. Collector Current vs. Collector-to-Emitter Voltage

Figure 7. Transfer Characteristics

Figure 9. Gate Threshold Voltage vs. Temperature

Figure 8. Collector-to-Emitter Leakage Current vs. Temp

Figure 10. Capacitance vs. Collector-to-Emitter Voltage

Figure 12. Inductive Switching Fall Time vs. Temperature

Figure 11. Resistive Switching Fall Time vs. Temperature

Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)

Dimensions

Soldering Footrpint

Part Marking System

1		
Gate		
2 Collector	AYWW NGD LF 8201AG	4 Collector
3		
Emitter		
NGD8201A	= Device C	ode
A=	Assembl	y Location
Y=	Year	
WW	= Work We	ek
G	= Pb-Free	Device

ORDERING INFORMATION						
Device	Package	Shipping†				
NGD8201ANT4G	DPAK (Pb-Free)	2,500 / Tape & Reel				

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.

Dire	Incl	nes	Millim	neters
Dim	Min	Max	Min	Max
А	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90 REF	
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1