

www.onsemi.com

IGBT 600V, 14A, N-Channel

Features

- Reverse Conducting II IGBT
- IGBT V_{CE}(sat)=1.85V typ. (I_C=15A, V_{GE}=15V)
- IGBT tf=75ns typ.
- Diode V_F=1.7V typ. (I_F=15A)
- Diode t_{rr}=95ns typ.
- 10µs Short Circuit Capability

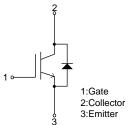
Applications

• General Purpose Inverter

Specifications

Absolute Maximum Ratings at Ta = 25°C, Unless otherwise specified

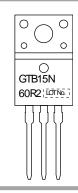
Parameter		Symbol	Value	Unit
Collector to Emitter Voltage		VCES	600	V
Gate to Emitter Voltage		VGES	±20	٧
Collector Current (DC)	@Tc=25°C *2		24	Α
Limited by Tjmax	@Tc=100°C *2	IC *1	14	А
Collector Current (Peak)		ICP	60	Α
Pulse width Limited by Tjmax Diode Average Output Current		lo	15	A
Power Dissipation Tc=25°C (Our ideal heat dissipation condition) *2		PD	54	W
Junction Temperature	Tj	175	°C	
Storage Temperature		Tstg	–55 to +175	°C


Note: *1 Collector Current is calculated from the following formula.

$$I_{C}(\text{Tc}) = \frac{\text{Tjmax - Tc}}{\text{R}_{th}(\text{j-c}) \times \text{V}_{CE}(\text{sat}) (I_{C}(\text{Tc}))}$$

*2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.


Electrical Connection N-Channel

TO-220F-3FS

Marking

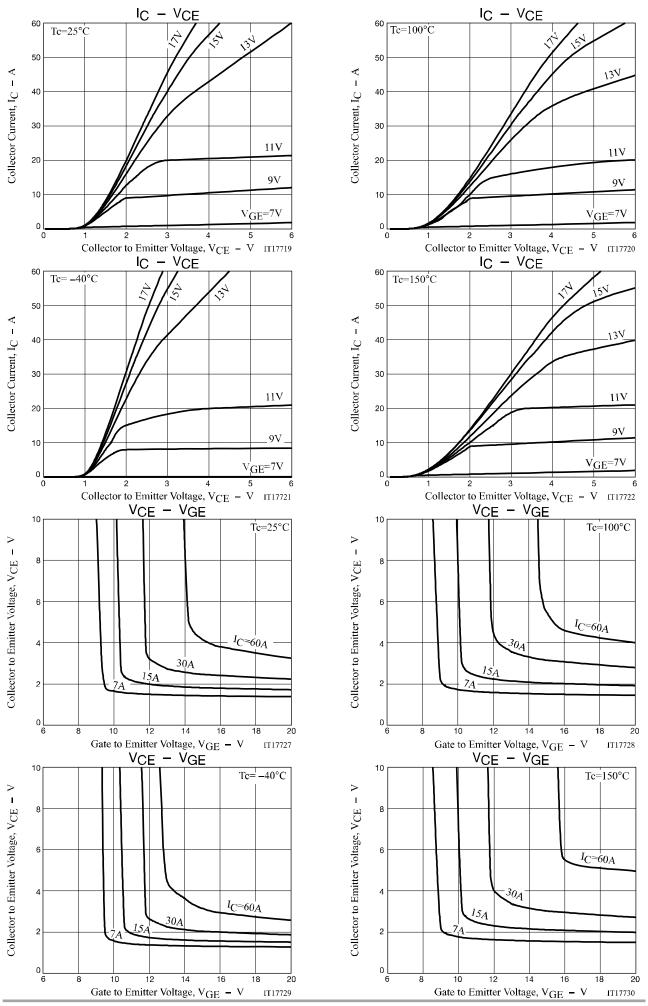
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

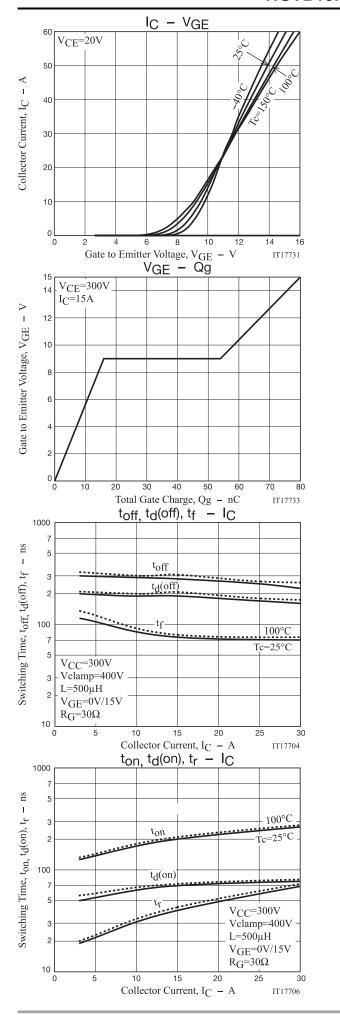
ORDERING INFORMATION

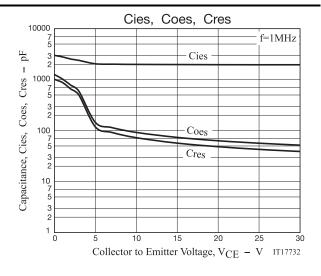
See detailed ordering and shipping information on page 7 of this data sheet.

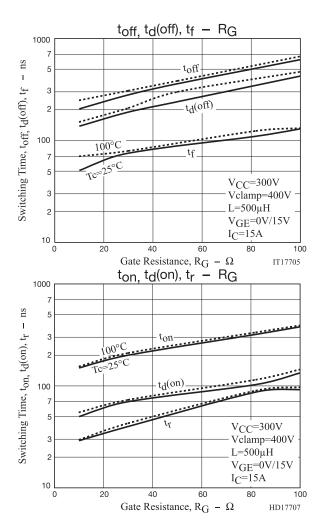
Electrical Characteristics at Ta = 25°C, Unless otherwise specified

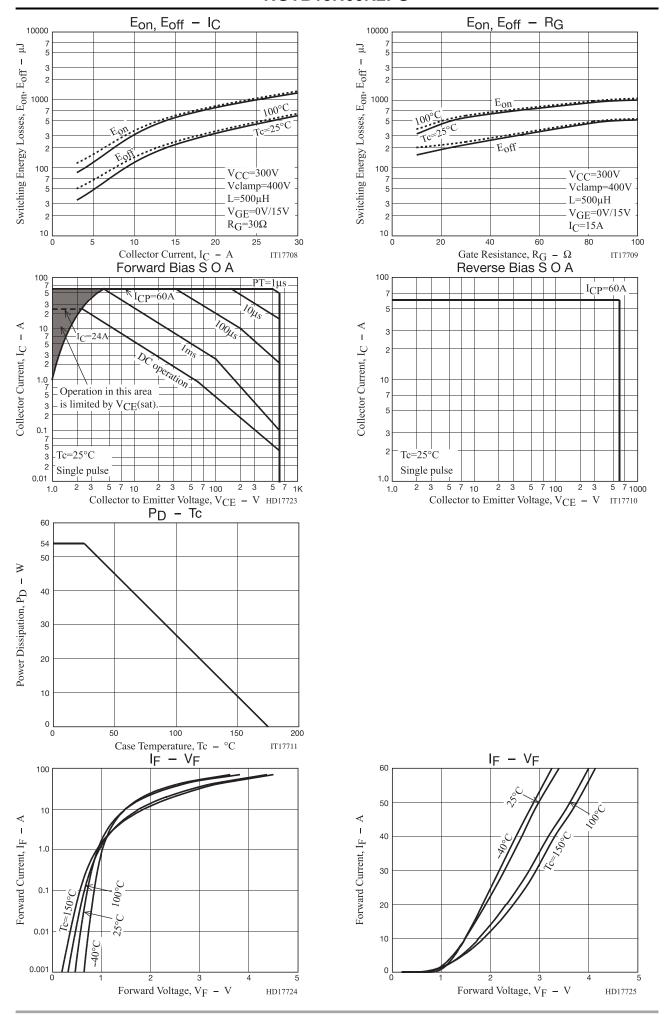
Daramatar	0	Conditions		Value			11.2
Parameter	Symbol			min	typ	max	Unit
Collector to Emitter Breakdown Voltage	V(BR)CES	I _C =500μA, V _{GE} =0V		600			V
Collector to Emitter Cut off Current	ICES	V _{CE} =600V, V _{GE} =0V	Tc=25°C			10	μΑ
			Tc=125°C			1	mA
Gate to Emitter Leakage Current	IGES	V _{GE} =±20V, V _{CE} =0V				±100	nA
Gate to Emitter Threshold Voltage	V _{GE} (th)	V _{CE} =20V, I _C =250μA		4.5		7.0	٧
Collector to Emitter Saturation Voltage		V _{GE} =15V, I _C =15A	Tc=25°C		1.85	2.1	V
	VCE(sat)	V _{GE} =15V, I _C =14A	Tc=100°C		2.0	2.3	٧
Forward Diode Voltage	٧F	I _F =15A			1.7	2.1	V
Input Capacitance	Cies				2000		pF
Output Capacitance	Coes	V _{CE} =20V, f=1MHz			65		pF
Reverse Transfer Capacitance	Cres				50		pF
Turn-ON Delay Time	t _d (on)	V _{CC} =300V, I _C =15A R _G =30Ω, L=500μH			70		ns
Rise Time	t _r				40		ns
Turn-ON Time	ton				200		ns
Turn-OFF Delay Time	t _d (off)	V _{GE} =0V/15V		190		ns	
Fall Time	tf	Vclamp=400V Tc=25°C See Fig.1, See Fig.2			75		ns
Turn-OFF Time	toff				290		ns
Turn-ON Energy	Eon				550		μJ
Turn-OFF Energy	Eoff				220		μJ
Total Gate Charge	Qg	V _{CE} =300V, V _{GE} =15V, I _C =15A			80		nC
Gate to Emitter Charge	Qge				16		nC
Gate to Collector "Miller" Charge	Qgc				38		nC
Diode Reverse Recovery Time	t _{rr}	I _F =15A,di/dt=300A/μs, V _C	C=300V, See Fig.3		95		ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Thermal Characteristics at Ta = 25°C, Unless otherwise specified


Parameter	Symbol	Conditions	Value	Unit
Thermal Resistance IGBT (Junction to Case)	Rth(j-c) (IGBT)	Tc=25°C (Our ideal heat dissipation condition) *2	2.78	°C/W
Thermal Resistance (Junction to Ambient)	Rth(j-a)		69	°C/W


Note: *2 Our condition is radiation from backside.


The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.

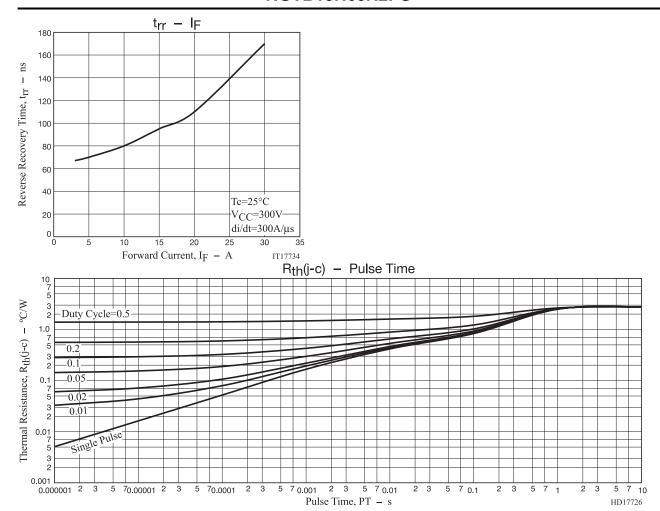


Fig.1 Switching Time Test Circuit

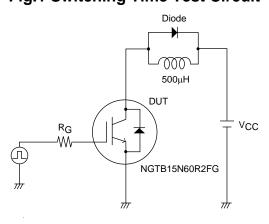


Fig.2 Timing Chart

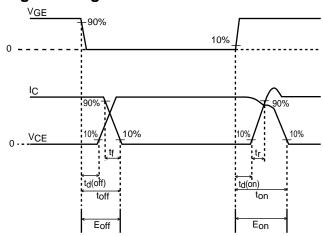
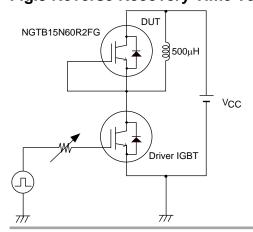
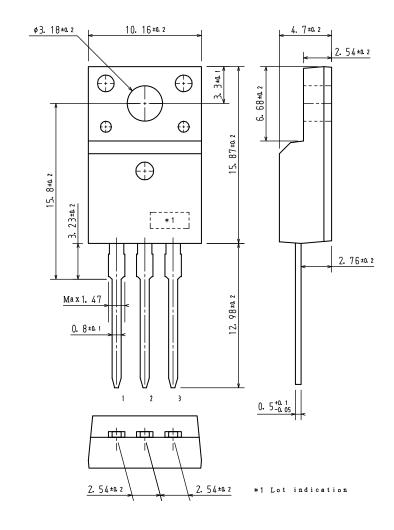



Fig.3 Reverse Recovery Time Test Circuit

Package Dimensions

NGTB15N60R2FG

TO-220F-3FS


CASE 221AM ISSUE O

unit: mm

1:Gate

2:Collector

3:Emitter

ORDERING INFORMATION

Device	Package	Shipping	note
NGTB15N60R2FG	TO-220F-3FS	50 pcs. / tube	Pb-Free and Halogen Free

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG
 RJH60F3DPQ-A0#T0

 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG
 IXA30RG1200DHGLB

 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 IHFW40N65R5SXKSA1
 APT70GR120J
 APT35GP120JDQ2

 IKZA40N65RH5XKSA1
 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65EH5XKSA1
 IKFW40N65ES5XKSA1

 IKFW60N65ES5XKSA1
 IMBG120R090M1HXTMA1
 IMBG120R220M1HXTMA1
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1

 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1
 HGTG40N60B3
 FGH60N60SMD_F085

 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2
 IKP20N60TXKSA1

 IHW20N65R5XKSA1
 IDW40E65D2FKSA1