IGBT - Field Stop II

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage. **Features**

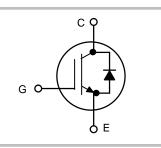
- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 10 µs Short Circuit Capability
- This is a Pb–Free Device

Typical Applications

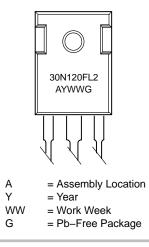
- Solar Inverter
- Uninterruptible Power Supplies (UPS)
- Welding

ABSOLUTE	MAXIMUM	RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _c	60 30	A
Pulsed collector current, T_{pulse} limited by T_{Jmax} , 10 μ s Pulse, V_{GE} = 15 V	I _{CM}	120	A
Diode forward current @ Tc = 25°C @ Tc = 100°C	I _F	60 30	A
Diode pulsed current, T_{pulse} limited by T_{Jmax}	I _{FM}	120	A
Gate-emitter voltage Transient gate-emitter voltage $(T_{pulse} = 5 \ \mu s, D < 0.10)$	V_{GE}	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	452 227	W
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 500 V, $T_J \leq 150^\circ C$	T _{SC}	10	μS
Operating junction temperature range	ТJ	-55 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®


www.onsemi.com

30 A, 1200 V V_{CEsat} = 2.0 V E_{off} = 0.7 mJ

MARKING DIAGRAM

ORDERING INFORMATION

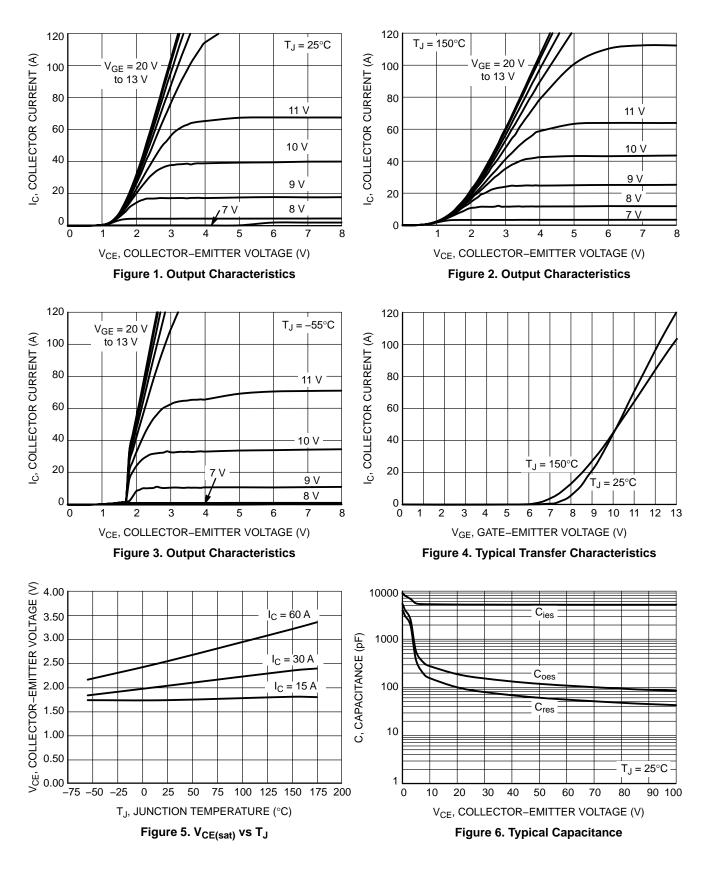
Device	Package	Shipping
NGTB30N120FL2WG	TO–247 (Pb–Free)	30 Units / Rail

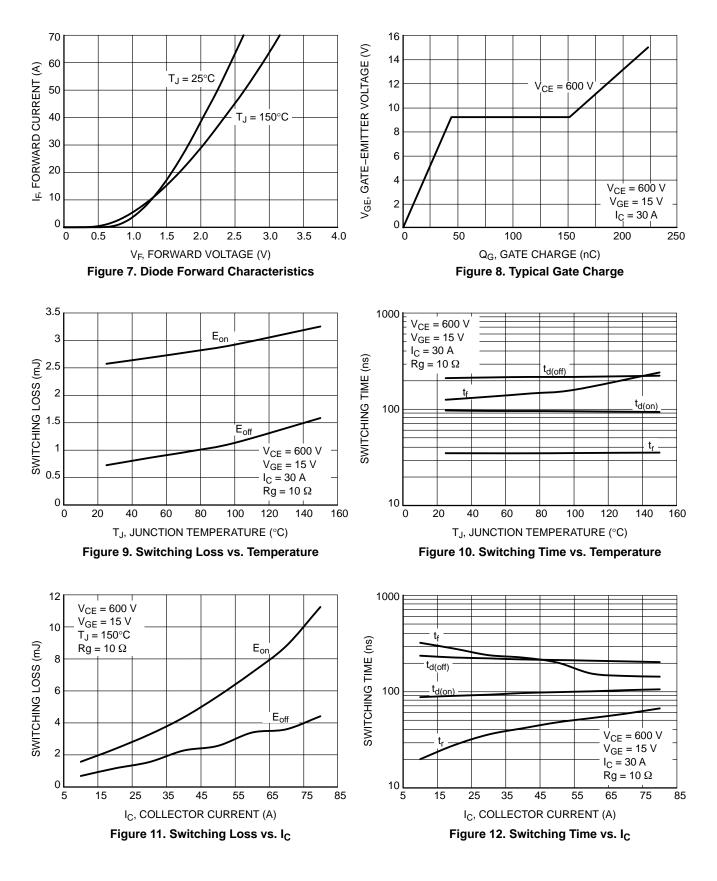
Semiconductor Components Industries, LLC, 2015
 July, 2015 – Rev. 1

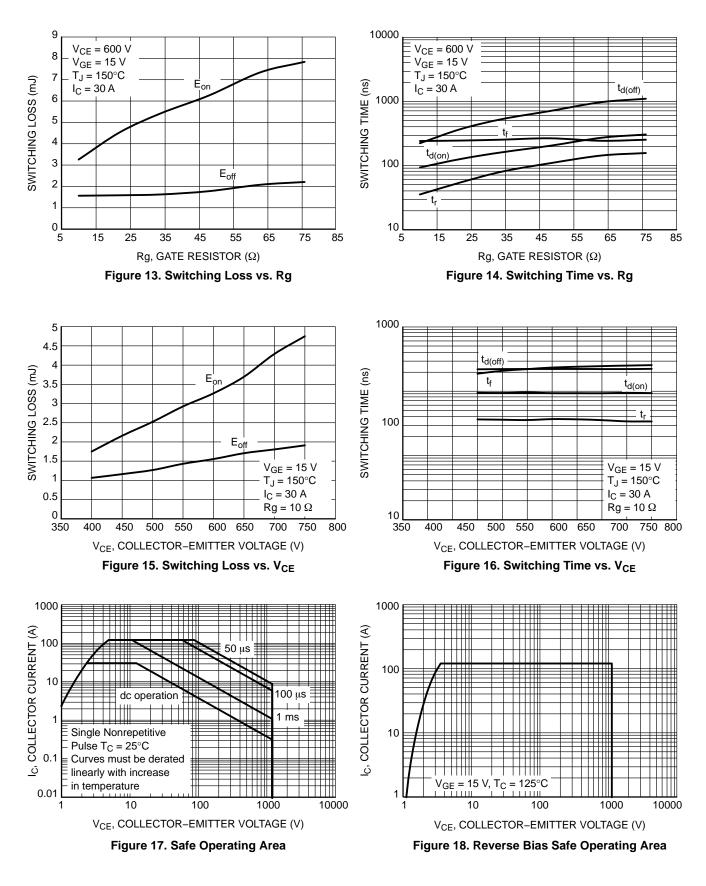
THERMAL CHARACTERISTICS

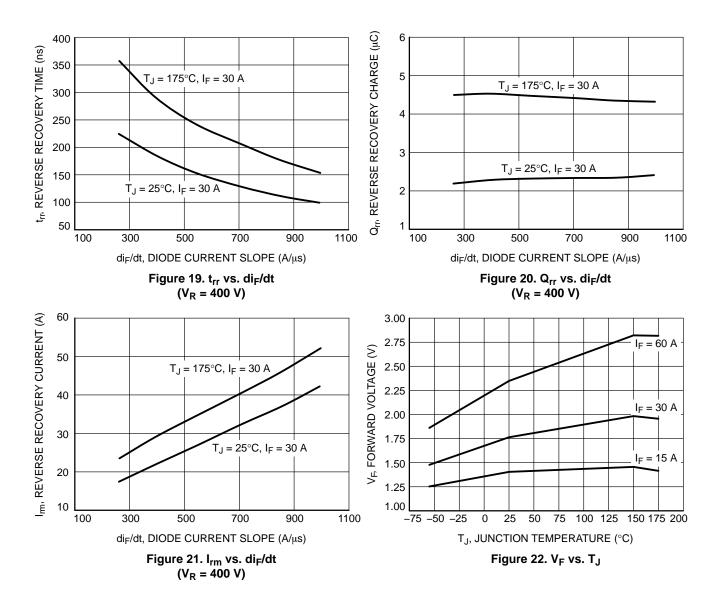
Rating		Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.33	°C/W
Thermal resistance junction-to-case, for Diode		0.5	°C/W
Thermal resistance junction-to-ambient	R_{\thetaJA}	40	°C/W

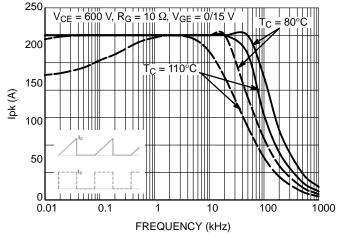
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

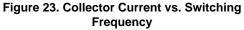

Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit
STATIC CHARACTERISTIC	•		-		-	
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	1200	-	_	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 30 A V_{GE} = 15 V, I _C = 30 A, T _J = 175°C	V _{CEsat}	_ _	2.00	2.30 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 400 \ \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 V, V_{CE} = 1200 V$ $V_{GE} = 0 V, V_{CE} = 1200 V, T_{J=} 175^{\circ}C$	ICES	-	-	1.0 2	mA
Gate leakage current, collector-emitter short-circuited	$V_{GE} = 20 \text{ V}$, $V_{CE} = 0 \text{ V}$	I _{GES}	-	-	200	nA

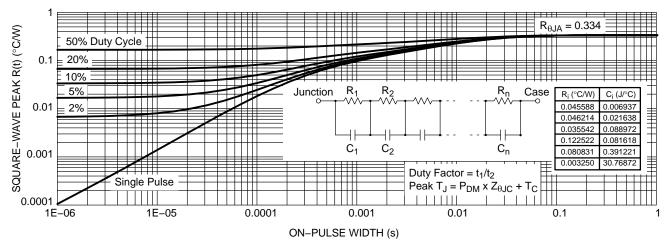

Input capacitance		Cies	-	5250	-	pF
Output capacitance	V_{CE} = 20 V, V_{GE} = 0 V, f = 1 MHz	Coes	-	170	-	
Reverse transfer capacitance		C _{res}	-	100	-	
Gate charge total		Qg	-	220	-	nC
Gate to emitter charge	V_{CE} = 600 V, I _C = 30 A, V _{GE} = 15 V	Q _{ge}	-	45	-	
Gate to collector charge		Q _{gc}	-	105	-	

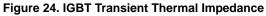

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

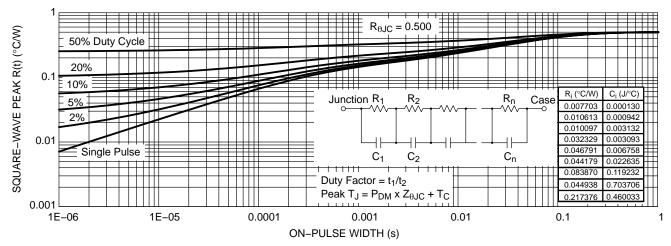

Turn-on delay time		t _{d(on)}	-	98	-	ns
Rise time		t _r	-	35	-	
Turn-off delay time	$T_J = 25^{\circ}C$ $V_{CC} = 600 V, I_C = 30 A$	t _{d(off)}	_	210	-	
Fall time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 30 \text{ A}$	t _f	-	130	-	
Turn-on switching loss	$R_g = 10 \Omega$ V _{GE} = 0 V/ 15V	Eon	-	2.6	-	mJ
Turn-off switching loss		E _{off}	-	0.7	-	
Total switching loss		E _{ts}	-	3.3	-	
Turn-on delay time		t _{d(on)}	-	92	-	ns
Rise time		t _r	-	35	-	1
Turn-off delay time	T _J = 175°C	t _{d(off)}	-	220	-	1
Fall time	$T_{J} = 175^{\circ}C$ $V_{CC} = 600 \text{ V, } I_{C} = 30 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{ V}$	t _f	-	260	-	1
Turn-on switching loss	V _{GE} = 0 V/ 15V	Eon	-	3.5	-	mJ
Turn-off switching loss		E _{off}	-	1.8	-	1
Total switching loss		E _{ts}	_	5.3	-	
DIODE CHARACTERISTIC						
Forward voltage	V_{GE} = 0 V, I _F = 30 A V _{GE} = 0 V, I _F = 30 A, T _J = 175°C	V _F		1.75 -		V
Reverse recovery time	T ₁ = 25°C	t	_	240	_	ns

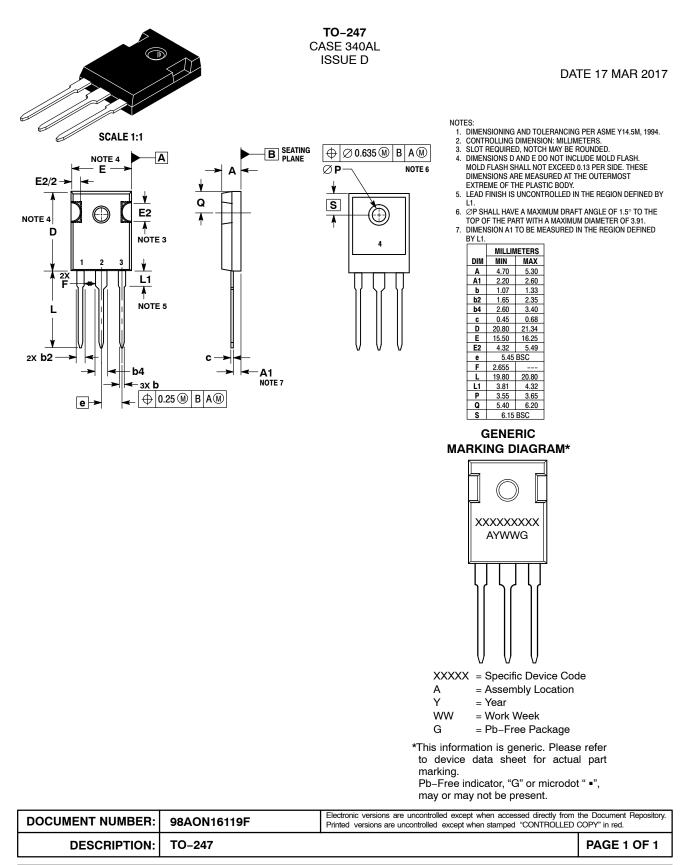

Forward voltage	V _{GE} = 0 V, I _F = 30 A V _{GE} = 0 V, I _F = 30 A, T _J = 175°C	VF	-	1.75 -	-	V
Reverse recovery time	$T_J = 25^{\circ}C$	t _{rr}	-	240	-	ns
Reverse recovery charge	I _F = 30 Å, V _R = 400 V di _F /dt = 200 A/μs	Q _{rr}	-	2.5	-	μC
Reverse recovery current		Irrm	-	18	I	А
Reverse recovery time	$T_{\rm J} = 175^{\circ}{\rm C}$	t _{rr}	-	413	I	ns
Reverse recovery charge	I _F = 30 A, V _R = 400 V di _F /dt = 200 A/us	Q _{rr}	-	4.3	-	μC
Reverse recovery current		I _{rrm}	_	20	I	А











MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1