NGTB40N120FL2WAG

IGBT - Field Stop II / 4 Lead

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. In addition, this new device is packaged in a $\mathrm{TO}-247-4 \mathrm{~L}$ package that provides significant reduction in $\mathrm{E}_{\text {on }}$ Losses compared to standard TO-247-3L package. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

Features

- Extremely Efficient Trench with Field Stop Technology
- $\mathrm{T}_{\mathrm{Jmax}}=175^{\circ} \mathrm{C}$
- Improved Gate Control Lowers Switching Losses
- Separate Emitter Drive Pin
- TO-247-4L for Minimal $\mathrm{E}_{\text {on }}$ Losses
- Optimized for High Speed Switching
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Solar Inverter
- Uninterruptible Power Inverter Supplies (UPS)
- Neutral Point Clamp Topology

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	$\mathrm{V}_{\text {CES }}$	1200	V
Collector current @ Tc $=25^{\circ} \mathrm{C}$ @ Tc $=100^{\circ} \mathrm{C}$	I_{C}	$\begin{gathered} 160 \\ 40 \end{gathered}$	A
Pulsed collector current, $\mathrm{T}_{\text {pulse }}$ limited by $\mathrm{T}_{\mathrm{Jmax}}$	$\mathrm{I}_{\text {cm }}$	160	A
Diode forward current @ $\mathrm{Tc}=25^{\circ} \mathrm{C}$ @ TC $=100^{\circ} \mathrm{C}$	I_{F}	$\begin{gathered} 160 \\ 40 \end{gathered}$	A
Diode pulsed current, $\mathrm{T}_{\text {pulse }}$ limited by $\mathrm{T}_{\text {Jmax }}$	$\mathrm{I}_{\text {FM }}$	160	A
Gate-emitter voltage Transient gate-emitter voltage ($\mathrm{T}_{\text {pulse }}=5 \mu \mathrm{~s}, \mathrm{D}<0.10$)	V_{GE}	$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	V
Power Dissipation @ $\mathrm{Tc}=25^{\circ} \mathrm{C}$ @ $\mathrm{Tc}=100^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 536 \\ & 268 \end{aligned}$	W
Operating junction temperature range	TJ	-55 to +175	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Lead temperature for soldering, 1/8" from case for 5 seconds	$\mathrm{T}_{\text {SLD }}$	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
$40 \mathrm{~A}, 1200 \mathrm{~V}$
$\mathrm{~V}_{\text {CEsat }}=2.1 \mathrm{~V}$
$\mathrm{E}_{\text {on }}=1.7 \mathrm{~mJ}$

MARKING DIAGRAM

40N120FL2 = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N120FL2WAG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$\mathrm{R}_{\text {өJC }}$	0.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-case, for Diode	$\mathrm{R}_{\text {өJC }}$	0.50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-ambient	$\mathrm{R}_{\text {өJA }}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {(BR)CES }}$	1200	-	-	V
Collector-emitter saturation voltage	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {CEsat }}$	-	$\begin{aligned} & 2.1 \\ & 2.4 \end{aligned}$	2.4	V
Gate-emitter threshold voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	4.5	5.5	6.5	V
Collector-emitter cut-off current, gateemitter short-circuited	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	$I_{\text {CES }}$	-	$\stackrel{-}{4.0}$	0.4	mA
Gate leakage current, collector-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$	$\mathrm{I}_{\text {GES }}$	-	-	200	nA

Input capacitance	$\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ies }}$	-	7500	-	pF
Output capacitance		$\mathrm{C}_{\text {oes }}$	-	136	-	
Reverse transfer capacitance		$\mathrm{C}_{\text {res }}$	-	230	-	
Gate charge total	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	Q_{g}	-	313	-	nC
Gate to emitter charge		Q_{ge}	-	61	-	
Gate to collector charge		Q_{gc}	-	151	-	

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	-	30	-	ns
Rise time		t_{r}	-	33	-	
Turn-off delay time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	145	-	
Fall time		t_{f}	-	95	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	1.7	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	1.1	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	2.8	-	
Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=175^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	-	28	-	ns
Rise time		t_{r}	-	37	-	
Turn-off delay time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	165	-	
Fall time		t_{f}	-	195	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	2.5	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	2.5	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	5.0	-	

DIODE CHARACTERISTIC

Forward voltage	$\begin{gathered} V_{G E}=0 \mathrm{~V}, I_{F}=40 \mathrm{~A} \\ V_{G E}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	V_{F}	-	$\begin{aligned} & 2.00 \\ & 2.30 \end{aligned}$	2.40 -	V
Reverse recovery time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \\ \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	t_{rr}	-	240	-	ns
Reverse recovery charge		Q_{rr}	-	2.5	-	$\mu \mathrm{C}$
Reverse recovery current		$\mathrm{I}_{\text {rm }}$	-	18	-	A
Reverse recovery time	$\begin{gathered} \mathrm{T}_{J}=175^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \\ \mathrm{di} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$\mathrm{trr}^{\text {r }}$	-	392	-	ns
Reverse recovery charge		$\mathrm{Q}_{\text {rr }}$	-	5.4	-	$\mu \mathrm{C}$
Reverse recovery current		$\mathrm{I}_{\text {rrm }}$	-	26	-	A

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NGTB40N120FL2WAG

TYPICAL CHARACTERISTICS

Figure 1. Output Characteristics

Figure 3. Output Characteristics

Figure 5. Typical Transfer Characteristics

Figure 2. Output Characteristics

Figure 4. Output Characteristics

T_{J}, JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
Figure 6. $\mathbf{V}_{\mathbf{C E}(\text { sat })} \mathbf{v s} \mathbf{T}_{\mathbf{J}}$

NGTB40N120FL2WAG

TYPICAL CHARACTERISTICS

Figure 7. Typical Capacitance

Figure 9. Typical Gate Charge

Figure 11. Switching Time vs. Temperature

Figure 8. Diode Forward Characteristics

Figure 10. Switching Loss vs. Temperature

Figure 12. Switching Loss vs. IC

NGTB40N120FL2WAG

TYPICAL CHARACTERISTICS

Figure 13. Switching Time vs. IC

Figure 15. Switching Time vs. $\mathbf{R}_{\mathbf{G}}$

Figure 17. Switching Time vs. $\mathbf{V}_{\text {CE }}$

Figure 14. Switching Loss vs. R_{G}

Figure 16. Switching Loss vs. V_{CE}

Figure 18. Safe Operating Area

NGTB40N120FL2WAG

TYPICAL CHARACTERISTICS

Figure 19. Reverse Bias Safe Operating Area

Figure 21. Q_{rr} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Figure 20. t_{rr} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Figure 22. I_{rm} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Figure 23. V_{F} vs. T_{J}

NGTB40N120FL2WAG

TYPICAL CHARACTERISTICS

Figure 24. Collector Current vs. Switching Frequency

Figure 25. IGBT Transient Thermal Impedance

Figure 26. Diode Transient Thermal Impedance

Figure 27. Test Circuit for Switching Characteristics

Figure 28. Definition of Turn On Waveform

NGTB40N120FL2WAG

Figure 29. Definition of Turn Off Waveform

DATE 07 MAY 2020

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CDNTRULLING DIMENSION: MILLIMETER
3. DIMENSIONS D AND E DO NDT INCLUDE MOLD FLASH. mald flash shall nat exceed 0.13 Per side. these DIMENSIONS ARE MEASURED AT THE DUTERMDST EXTREME IF THE PLASTIC BODY.
4. Lead finish is uncontralled in the regian defined by li.
5. dimension al ta be measured in the region defined by li.
6. NDTCHES ARE REQUIRED BUT THEIR SHAPE IS OPTIONAL.
7. DIAMETER P SHALL HAVE A MAXIMUM DRAFT ANGLE DF 3.5° TD THE TIP DF THE PART WITH A MAXIMUM DIAMETER DF 4.20.

GENERIC MARKING DIAGRAM*

	D1	16.25	17.65
	E	15.75	16.13
	E1	13.06	13.46
	E2	4.32	4.83
	e	2.54 BSC	
XXXXXXXXX AYWWG	L	19.90	20.30
	L1	4.00	4.40
	P	3.50	3.70
\bigcirc	Q	5.59	6.20
171	S	6.15 BSC	

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \cdot ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON97044F | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-247 4-LEAD | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

