NIS5112

Electronic Fuse

The NIS5112 is an integrated switch utilizing a high side N -channel FET driven by an internal charge pump. This switch features a MOSFET which allows for current sensing using inexpensive chip resistors instead of expensive, low impedance current shunts.

It is designed to operate in 12 V systems and includes a robust thermal protection circuit.

Features

- Integrated Power Device
- Power Device Thermally Protected
- No External Current Shunt Required
- Enable/Timer Pin
- Adjustable Slew Rate for Output Voltage
- 9 V to 18 V Input Range
- $30 \mathrm{~m} \Omega$ Typical
- Internal Charge Pump
- ESD Ratings: Human Body Model (HBM); 4000 V
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Hard Drives

Figure 1. Block Diagram

NIS5112

Table 1. FUNCTIONAL PIN DESCRIPTION

Pin	Function	Description
3	Enable/Timer	A high level signal on this pin allows the device to begin operation. Connection of a capacitor will delay turn on for timing purposes. A low input signal inhibits the operation.
1	Ground	Negative input voltage to the device. This is used as the internal reference for the IC.
4	LLimit	A resistor between this pin and the source pin sets the current limit level.
$5,6,7$	Source	Source of power FET, which is also the switching node for the load.
2	$\mathrm{dV} / \mathrm{dt}$	A capacitor from this pin to ground programs the slew rate of the output at turn on. This capacitor is discharged by an internal discharge circuit when the device is disabled via the enable pin.
8	$\mathrm{~V}_{\mathrm{CC}}$	Positive input voltage to the device.

Table 2. MAXIMUM RATINGS (Maximum ratings are those, that, if exceeded, may cause damage to the device. Electrical characteristics are not guaranteed over this range)

Rating	Symbol	Value	Unit
Input Voltage, Operating, Steady-State (Input+ to Input-) Transient (Conditions 1 ms)	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & \hline-0.3 \text { to } 18 \\ & -0.3 \text { to } 25 \end{aligned}$	V
Drain Voltage, Operating, Steady-State (Drain to Input-) Transient (Conditions 1 ms)	V_{DD}	$\begin{aligned} & \hline-0.3 \text { to } 18 \\ & -0.3 \text { to } 25 \end{aligned}$	V
Drain Current, Peak (Internally Clamped)	$\mathrm{I}_{\text {Dpk }}$	25	A
Drain Current, Continuous ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$), (Note 2)	$\mathrm{I}_{\text {Davg }}$	5.3	A
Thermal Resistance, Junction-to-Air 0.5 in 2 Copper 1.0 in 2 Copper	$Q_{J A}$	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Resistance, Junction-to-Lead (Pin 8)	$Q_{J L}$	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation ($\mathrm{A}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (Note 1)	$\mathrm{P}_{\text {max }}$	1.0	W
Operating Temperature Range (Note 2)	T_{J}	-40 to 175	${ }^{\circ} \mathrm{C}$
Nonoperating Temperature Range	T_{J}	-55 to 175	${ }^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 Sec)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted on FR-4 board, 1 in sq pad, 1 oz coverage.
2. Actual maximum junction temperature is limited by an internal protection circuit and will not reach the absolute maximum temperature as specified.

Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\text {LIMIT }}=56 \Omega \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ	Max	Unit
POWER FET					
Delay Time (Enabling of Chip to Beginning of Conduction (10\% of IPK))	$\mathrm{T}_{\text {dly }}$	-	5.0	-	ms
Charging Time (Beginning of Conduction to 90% of $\mathrm{V}_{\text {out }}$) $\mathrm{C}_{\mathrm{dV} / \mathrm{dt}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {load }}=1000 \mu \mathrm{~F}$	$\mathrm{t}_{\text {chg }}$	-	64	-	ms
ON Resistance $\begin{aligned} & \left(I_{D}=2 A, T_{J}=-20^{\circ} \mathrm{C}\right)(\text { Note } 3) \\ & \left(I_{D}=2 A, T_{J}=25^{\circ} \mathrm{C}\right) \\ & \left(I_{D}=2 A, T_{J}=100^{\circ} \mathrm{C}\right)(\text { Note } 3) \end{aligned}$	$\mathrm{R}_{\text {DSon }}$	-	$\begin{gathered} 23.5 \\ 28 \\ 37 \end{gathered}$	$\begin{gathered} 27.5 \\ 32 \\ 43.5 \end{gathered}$	$\mathrm{m} \Omega$
Off State Output Voltage $\left(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}_{\mathrm{dc}}\right.$, Enable Low, $\left.\mathrm{V}_{\mathrm{dc}}, \mathrm{T}_{\mathrm{J}}=-20^{\circ} \mathrm{C}\right)$ (Note 3) ($\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}_{\mathrm{dc}}$, Enable Low, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$) $\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}_{\mathrm{dc}}\right.$, Enable Low, $\left.\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}\right)($ Note 3)	$\mathrm{V}_{\text {off }}$	-	-	$\begin{aligned} & 120 \\ & 120 \\ & 200 \end{aligned}$	mV
Output Capacitance ($\mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}_{\mathrm{dc}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}_{\mathrm{dc}}, \mathrm{f}=10 \mathrm{kHz}$)		-	396	-	pF

THERMAL LATCH

Shutdown Temperature (Note 3)	T_{SD}	125	135	145
Thermal Hysteresis (Auto Retry Only) (Note 3)	$\mathrm{T}_{\text {hyst }}$	-	40	-

ENABLE/TIMER

Enable Voltage (Turn-on) ($\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{\mathrm{J}}=-20^{\circ} \mathrm{C}$) (Note 3) ($\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$) ($\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$) (Note 3)	$\mathrm{V}_{\text {ENon }}$	$\begin{aligned} & 2.45 \\ & 2.5 \\ & 2.7 \end{aligned}$		-	V
Enable Voltage (Turn-off) ($\left.\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{\mathrm{J}}=-20^{\circ} \mathrm{C}\right)($ Note 3) ($\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$) ($\mathrm{R}_{\text {load }}=2 \mathrm{~K}, \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$) (Note 3)	$\mathrm{V}_{\text {ENoff }}$			$\begin{aligned} & 1.8 \\ & 1.9 \\ & 2.0 \end{aligned}$	V
Charging Current (Current Sourced into Timing Cap) $\left(\mathrm{T}_{J}=-20^{\circ} \mathrm{C}\right)(\text { Note } 3)$ $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$ ($T_{J}=100^{\circ} \mathrm{C}$) (Note 3)	${ }^{\text {I Charge }}$	$\begin{aligned} & 67 \\ & 70 \\ & 71 \end{aligned}$	$\begin{aligned} & 80 \\ & 83 \\ & 84 \end{aligned}$	$\begin{aligned} & 90 \\ & 92 \\ & 96 \end{aligned}$	$\mu \mathrm{A}$

OVERVOLTAGE CLAMP

Output Clamping Voltage	$V_{\text {Clamp }}$			
$\left(V_{C C}=18 \mathrm{~V}, \mathrm{~T}_{J}=-20^{\circ} \mathrm{C}\right)($ Note 3)		14	15.5	17
$\left(\mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$		14	15	16.2
$\left(\mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{~T}_{J}=100^{\circ} \mathrm{C}\right)($ Note 3)		13	14.5	16

CURRENT LIMIT

Short Circuit Current Limit, $\left(R_{\text {extlLimit }}=56 \Omega, \mathrm{~T}_{J}=-20^{\circ} \mathrm{C}\right)($ Note 3) ($\mathrm{R}_{\text {extlLimit }}=56 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$) $\left(R_{\text {extLLimit }}=56 \Omega, T_{J}=100^{\circ} \mathrm{C}\right)$ (Note 3)	LLim-SS	$\begin{gathered} 2.05 \\ 2.0 \\ 1.7 \end{gathered}$	2.7 2.5 2.3	3.2 3.0 2.7	A
Overload Current Limit, (Note 3) $\left(R_{\text {extlLimit }}=56 \Omega, \mathrm{~T}_{J}=-20^{\circ} \mathrm{C}\right)$ (RextLLimit $^{\text {ent }}=56 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$) ($R_{\text {extLLimit }}=56 \Omega, T_{J}=100^{\circ} \mathrm{C}$)	${ }_{\text {Lim-OL }}$	$\begin{aligned} & 3.7 \\ & 3.5 \\ & 3.4 \end{aligned}$	4.6 4.4 4.3	5.5 5.3 5.2	A

dV/dt CIRCUIT

Slew Rate	$\mathrm{dV} / \mathrm{dt}$	0.130	0.15	0.170	$\mathrm{~V} / \mathrm{ms}$
$\left(\mathrm{C}_{\mathrm{dV} / \mathrm{dt}}=1 \mu \mathrm{f}\right)$					
Charging Current (Current Sourced into dV/dt Cap)	$\mathrm{I}_{\mathrm{dV} / \mathrm{dt}}$		67	80	90
$\left(\mathrm{~T}_{J}=-20^{\circ} \mathrm{C}\right)($ Note 3)		70	8 A		
$\left(\mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$	83	92			
$\left(\mathrm{~T}_{J}=100^{\circ} \mathrm{C}\right)($ Note 3)		71	84	96	
Max Capacitor Voltage	$\mathrm{V}_{\max }$	-	-	V_{CC}	V

TOTAL DEVICE

Bias Current (Device Operational, Load Open, $\left.\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}\right)$	$\mathrm{I}_{\text {Bias }}$	-	1.45	2.0
Minimum Operating Voltage	$\mathrm{V}_{\min }$	-	-	9.0

3. Verified by design.

Figure 2. Current Limit Adjustment

(Typical operating conditions: $\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\text {lLimit }}=56 \Omega, \mathrm{C}_{\mathrm{dV} / \mathrm{dt}}=1 \mu \mathrm{~F}$)
Figure 4. Typical Application Circuit

Figure 5. Turn-on Waveforms for a Resistive Load of $10 \Omega\left(C_{d v} / \mathrm{dt}=1 \mu \mathrm{f}\right)$

Figure 6. Turn-on Waveforms for a Load Capacitance of $3,300 \mu \mathrm{f}\left(\mathrm{C}_{\mathrm{dv}} / \mathrm{dt}=1 \mu \mathrm{f}\right)$

Tek Stop: Single Seq $2.50 \mathrm{kS} / \mathrm{s}$

Figure 7. Turn-on Waveforms for an Overvoltage Condition (10 Ω Resistive Load)

Figure 8. Current Waveforms for Overload, Short Circuit and Thermal Shutdown

DEVICE OPERATION

Basic Operation

This device is a self-protected, resettable, electronic fuse. It contains circuits to monitor the input voltage, output current, die temperature, turn-on di/dt and turn-on $\mathrm{dV} / \mathrm{dt}$, as well as an enable/timer function.

On application of the input voltage, the device will apply the input voltage to the load based on the restrictions of the controlling circuits. The $\mathrm{dV} / \mathrm{dt}$ of the output voltage can be programmed by the addition of a capacitor to the $\mathrm{dV} / \mathrm{dt}$ pin, or if left open, the output current will be limited by the internally controlled di/dt.

The device will remain on as long as the temperature does not exceed the $135^{\circ} \mathrm{C}$ limit that is programmed into the chip. The current limit circuit does not shut down the part but will reduce the conductivity of the FET to maintain a constant current as long as it remains at the set level. The input overvoltage clamp also does not shut down the part, but will limit the output voltage to 15 V in the event that the input exceeds that level.

The device can be turned on and off by the enable/timer function, which can also be used to reset the device after a thermal fault if the thermal latch version is chosen.

An internal charge pump provides bias for the gate voltage of the internal N -channel power FET and also for the current limit circuit. The remainder of the control circuitry operates between the input voltage (V_{CC}) and ground.

dV/dt

This circuit is comprised of an operational amplifier and current source as shown in Figure 9. The enable circuit controls a FET that keeps the slew-rate capacitor discharged any time the device is disabled. When the enable pin is released (low-to-high transition) or when power is applied with the enable pin in a high state, the $\mathrm{dV} / \mathrm{dt}$ capacitor begins to charge due to the $80 \mu \mathrm{~A}$ in the current source. The amplifier controls the output voltage and tracks the voltage on the $\mathrm{dV} / \mathrm{dt}$ cap scaled by a factor of 2 . The output voltage will continue to ramp higher until it reaches the input voltage, or until the 15 V clamp limits it.
The equation for the output slew rate is
$\mathrm{dV} / \mathrm{dt}=\left(\mathrm{I} / \mathrm{C}_{\mathrm{dV} / \mathrm{dt}}\right) \times 2$.
Where:
I - is $80 \mu \mathrm{~A}$ (internal current source)
$\mathrm{C}_{\mathrm{dV} / \mathrm{dt}}$ - is the desired $\mathrm{dV} / \mathrm{dt}$ capacitor value.
The $\mathrm{dV} / \mathrm{dt}$ ramp begins with a small step of about 200 mV . This step causes a current surge into the output load capacitance which can be seen in Figure 6. The peak level of this surge will be limited to the overload level of the current limit.

Figure 9. dV/dt Circuit

Overvoltage Clamp

The overvoltage clamp consists of an amplifier and reference. It monitors the output voltage and if the output voltage exceeds 15 V , the gate drive of the main FET is reduced to limit the output. This is intended to allow operation through transients while protecting the load. If an overvoltage condition exists for many seconds, the device may overheat due to the voltage drop across the FET combined with the load current. In this event, the thermal protection circuit would shut down the device.

Enable/Timer

The enable/timer pin can function either as a direct enable pin, or as a time delay. In the enable mode, an open collector device is connected to this pin. When the device is in its low impedance mode, this pin is low and the operation of the chip is disabled. If a time delay is required, a capacitor is added to this pin.
If a capacitor is added without an open collector device, the turn on will be delayed from the time at which the UVLO voltage is reached. If an open collector device is also used, the delay will start from the time that it goes into its high impedance state. The capacitor is charged by an internal current source of $80 \mu \mathrm{~A}$ (typical).

The nominal trip voltage of the comparator is 2.5 V and was designed to be compatible with most logic families. In general, logic gates can be tied directly to this pin, but it is recommended that this be tested.

There is an inherent delay in the turn on of the electronic fuse, due to the method of gate drive used. The gate of the power FET is charged through a high impedance resistor, and from the time that the gate starts charging until the time that it reaches its threshold voltage, there will be no conduction. Once the gate reaches its threshold voltage, the output current will begin a controlled ramp up phase.

This delay will be added to any timing delay due to the enable/timer circuit. Figure 10 shows a simplified diagram of the enable/timer circuit.

Figure 10. Simplified Schematic Diagram of the Enable/Timer Circuit

Thermal Protection Circuit

The temperature limit circuit senses the temperature of the Power FET and removes the gate drive if the maximum level is exceeded. The NIS5112 device has two different thermal limit versions, auto-retry and latch off.

Auto-Retry Version

The device will shut down when the thermal limit threshold is reached $\left(\mathrm{T}_{\mathrm{J}}=135^{\circ} \mathrm{C}\right.$, typical) and will not turn back on until the die temperature reduces down to $95^{\circ} \mathrm{C}$ ($40^{\circ} \mathrm{C}$ hysteresis, typical). It will keep auto-retrying until the fault condition is removed or power is turned-off.

Latch-Off Version

For the latch-off version, the device will shut down when the thermal limit threshold is reached $\left(\mathrm{T}_{\mathrm{J}}=135^{\circ} \mathrm{C}\right.$, typical) and will remain off until power is reset.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resettable Fuses - PPTC category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
0001.1010.G RF0077-000 RF0627-000 RF3256-000 RF3301-000 RF3344-000 RF3382-000 ASMD185-2 SMD125-2 RF1548-000 RF1973-000 RF2171-000 RF2531-000 RF2873-000 RF3060-000 RF3284-000 RF3329-000 TR600-150Q-B-0.5-0.130 RXE090 5E4795/041502 TRF250-080T-B-1.0-0.125 SMD100-2 NIS5452MT1TXG NIS5431MT1TXG SMD250-2 0ZCM0001FF2G 0ZCM0003FF2G 0ZCM0004FF2G BK60-017-DI BK60-075-DZ BK60-050-DI BSMD1210-050-13.2V SMD1206-200C-16V SMD1210-500-6V SMD1210-$550-6 \mathrm{~V}$ SMD0603-075-6V SMD0603-100-6V SMD0603-150-6V JK-SMD0805-300L JK-SMD1210-300L JK-SMD1210-400L JK-MSMD500L-12V BSMD0603-050-9V BSMD0603-050-12V BSMD0805-035-12V BSMD1812L-600-12V FTR1812-014 FTR1206-150 FTR1206-110 FTR1812-260/16

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

